Abstract:
A system configured to receive a request to identify a quality of service (QoS) policy to be used to process traffic that is received from a user device associated with another network; obtain an interoperable QoS policy, where the interoperable QoS policy identifies a first QoS level, associated with the other network, that corresponds to a type of traffic received from the user device; obtain, from the interoperable QoS policy, a second QoS level that corresponds to the first QoS level; and send, to a device, an instruction to process the traffic based on the second QoS level.
Abstract:
A method, performed by a fixed wireless router device, may include receiving a packet from a Long Term Evolution network, where the packet is associated with a particular Long Term Evolution Quality of Service class and mapping the particular Long Term Evolution Quality of Service class to a particular Differentiated Services Core Point Quality of Service class. The method may further include assigning a Differentiated Services Core Point Quality of Service class to the packet based on the particular Differentiated Services Core Point Quality of Service class and forwarding the packet to particular device associated with a customer premises network serviced by the fixed wireless router device, based on a priority associated with the assigned Differentiated Services Core Point Quality of Service class.
Abstract:
A system may be configured to identify attributes of a bearer channel. Based on the attributes of the bearer channel, the system may identify a header compression policy associated with the bearer channel. The system may be configured to identify, based on attributes of traffic sent and/or received via the bearer channel, and further based on the header compression policy, that header compression should be performed on at least a portion of the traffic associated with the bearer channel. The system may be configured to perform header compression on the at least the portion of the traffic.
Abstract:
A visual indicator, such as a light emitting diode (LED), may display the quality of the radio frequency (RF) link. In one implementation, a device may include, a RF antenna; a control module to connect to a Long-Term Evolution (LTE) network through the RF antenna; and a LED, disposed on an outer surface of the device, to emit light of a number of different colors, where the color to emit is selected based on a quality of the connection to the LTE network. The device may include an outdoor broadband unit connected to an external portion of a customer premise.
Abstract:
A device receives or creates file packets to be broadcast, via multicast delivery, to multiple user equipment by a broadcast multicast service control (BMSC) device. The device stores the file packets in the memory, and receives, via unicast delivery, a file repair request from a particular user equipment of the multiple user equipment. The device identifies particular file packets in the memory based on the file repair request, and provides, via unicast delivery, the particular file packets to the particular user equipment.
Abstract:
A device receives a first request to establish a bearer with a first UE associated with a LTE device, where the first request includes first parameters associated with the first UE. The device also determines that the LTE device does not have the bearer established, and provides a new bearer request, with the first parameters, to a wireless network in order to establish the bearer with the LTE device at a first data rate. The device further receives a second request to establish another bearer with a second UE associated with the LTE device, where the second request includes second parameters associated with the second UE. The device determines that the LTE device has the bearer established, and provides a modify bearer request, with the second parameters, to the wireless network in order to modify the bearer with the LTE device to a second data rate.
Abstract:
A device receives, from a user device, a request to access a network, determines whether to accept or deny the request to access the network, and monitors traffic provided to or from the user device via the network. The device also determines a traffic pattern for the user device based on the traffic, classifies the traffic as one of high throughput traffic, low packet data size traffic, or high frequency packet interval traffic, and applies different network resource control mechanisms to different classifications of the traffic.
Abstract:
A device classifies access or control channel signals into a first class or a second class, initializes a dormancy timer associated with the device, and sets the dormancy timer to a default value. The device also sets a signal target utilization threshold, receives actual signals via the access or control channel, and identifies, when a number of the actual signals exceeds the signal target utilization threshold, a particular signal, from the actual signals, as belonging to the first class or the second class. The device further increases the default value of the dormancy timer when the particular signal belongs to the first class, and decreases the default value of the dormancy timer when the particular signal belongs to the second class.
Abstract:
A device may receive a network access request and perform at least one of signal strength measurements of a first wireless network and a second wireless network, a determination of a level of congestion of the first wireless network and a level of congestion of the second wireless network, or a determination of an access point name (APN) type associated with the network access request. The device may select one of the first wireless network or the second wireless network based on the performance of the at least one of the signal strength measurements, the determination of the level of congestion of the first wireless network and the level of congestion of the second wireless network, or the determination of the APN type associated with the network access request. The device may further connect to the selected one of the first wireless network or the second wireless network.
Abstract:
A device receives an attachment request from a user device, and determines whether the user device is a stationary device based on the attachment request. The device further establishes a connection between the user device and a network by using local components associated with the device when the user device is the stationary device. The local components perform functions performed by one or more of a remote mobility management entity (MME) device, a remote serving gateway (SGW), or a remote packet data network (PDN) gateway (PGW) associated with the device. The device also transmits data from the network to the user device via the local components associated with the device after establishing the connection between the user device and the network.