摘要:
An optical measurement device capable of improving optical spectrum measurement accuracy without the need to structurally decrease a slit width. A diffraction grating for dispersing measurement light into respective different wavelengths is rotated in a given direction to produce diffracted light of selected wavelengths. A focusing lens converges the diffracted light to produce a converged beam. A slit control section varies the slit width at a constant scan speed to open or close the slit, thereby varying the passing bandwidth for the converged beam. A light receiving/measuring section receives the light passed through the slit, obtains a level function indicative of the power level of the received light that varies with change in optical frequency, and differentiates the level function by the scan speed to reproduce the spectrum profile of the measurement light.
摘要:
Conventionally, an adjustment of an optical power level of an input Pin of an optical amplifier module is made with an optical variable attenuator. An optical coupler for measuring the optical power level of Pin and an optical variable attenuator are replaced by a variable optical coupler. The branch ratio of the variable optical coupler is varied, whereby the input optical power level Pin to an optical amplifier module is adjusted. As a result, an optical loss is reduced by an amount corresponding to the elimination of the optical attenuator, and also the OSNR of the optical amplifier module is improved.
摘要:
The present invention relates to an optical amplifier and, in particular, it relates to multistage optical amplification having a feature for compensating for the tilt that is generated when a signal having a plurality of optical wavelengths and the like according to a wavelength division multiplexing (WDM) method is amplified in a wide bandwidth. The multistage optical amplifier comprises: a plurality of optical amplifiers that are connected in a multistage manner; and a common control section for commonly controlling pumping light powers of said plurality of optical amplifiers, wherein said common control section includes: tilt detection means for detecting amounts of tilt of each of said plurality of optical amplifiers; and tilt cancellation means for controlling the pumping light powers of said plurality of optical amplifiers so that the amounts of tilt of each of the optical amplifiers detected by said tilt detection means cancel each other.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength λ0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength &lgr;&thgr; of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength .lambda..sub.0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
According to an aspect of an embodiment, a method of modeling an optical signal transmission path may include obtaining first transmission characteristics of an optical signal transmission path within an optical network based on a parameter of the optical network and randomly changing states of polarization of an optical signal within the optical signal transmission path. The method may also include obtaining second transmission characteristics of the optical signal transmission path based on the parameter and a first fixed state of polarization of the optical signal. The method may also include correlating the first transmission characteristics with the second transmission characteristics to obtain an effective state of polarization of the optical signal. A simulation of the optical signal transmission path based on the parameter and the effective state of polarization of the optical signal may produce transmission characteristics that may approximate the first transmission characteristics.
摘要:
A method for shared mesh restoration includes configuring a switch to allow sharing of a plurality of backup line cards across a plurality of node degrees associated with a reconfigurable optical add/drop multiplexer (ROADM). The switch is communicatively coupled to the ROADM. The method further includes configuring a number of backup line cards coupled to the switch. The number of backup line cards is based on determining a number of active backup lightpaths for each of a plurality of network failures associated with each of the plurality of node degrees of the ROADM, identifying which node degree and failure has the largest number of active backup lightpaths for all of the plurality of node degrees of the ROADM and for each of the plurality of network failures, and determining the number of backup line cards to configure based on the identified largest number of active backup lightpaths.
摘要:
A system and method are provided for monitoring traffic in a network comprising a plurality of links, wherein each of the plurality of links comprises a plurality of neighboring pairs of slots. The system and method may include identifying a first usage status and a second usage status, calculating a utilization entropy value based at least on the difference between the first and second usage status, iteratively calculating a set of utilization entropy values for a portion of the network, and calculating an overall utilization entropy value for the portion of the network under analysis based at least on a statistical analysis of the set of utilization entropy values.
摘要:
A dispersion measurement apparatus includes: a pulse generator to output optical pulses including an optical pulse with a first wavelength and an optical pulse with a second wavelength to an optical transmission path, the second wavelength being different from the first wavelength; a reception pulse analyzer including an optical receiver that receives the optical pulses output by the pulse generator, and an analyzer that performs a wavelet transform on an electrical pulse output through the reception performed by the optical receiver; and a calculator to detect, based on a result of the wavelet transform, a time difference between the optical pulse with the first wavelength and the optical pulse with the second wavelength, and to determine dispersion in the optical transmission path.