Abstract:
Embodiments relate to systems and methods for sensor self-diagnostics using multiple signal paths. In an embodiment, the sensors are magnetic field sensors, and the systems and/or methods are configured to meet or exceed relevant safety or other industry standards, such as SIL standards. For example, a monolithic integrated circuit sensor system implemented on a single semiconductor ship can include a first sensor device having a first signal path for a first sensor signal on a semiconductor chip; and a second sensor device having a second signal path for a second sensor signal on the semiconductor chip, the second signal path distinct from the first signal path, wherein a comparison of the first signal path signal and the second signal path signal provides a sensor system self-test.
Abstract:
A spinning current Hall sensor configured to provide a sequence of input signals in response to a bias current being applied to a sequence of terminals of Hall sensing elements of the Hall sensor, the terminals of the Halls sensing elements configured to be interconnected in a sequence of configurations between a bias current supply and ground, with the bias current supply being connected to and applying the bias current to a different one of the terminals of each configuration. A chopping circuit demodulates the sequence of input signals to provide a corresponding sequence of demodulated positive and negative signals, with a residual offset calibration signal for the spinning current Hall sensor being based on the sequence of demodulated positive and negative signals.
Abstract:
One embodiment of the present invention relates to a vertical Hall-effect device. The device includes at least two supply terminals arranged to supply electrical energy to the first Hall-effect region; and at least one Hall signal terminal arranged to provide a first Hall signal from the first Hall-effect region. The first Hall signal is indicative of a magnetic field which is parallel to the surface of the semiconductor substrate and which acts on the first Hall-effect region. One or more of the at least two supply terminals or one or more of the at least one Hall signal terminal comprises a force contact and a sense contact.
Abstract:
An integrated circuit includes a semiconductor die including a first magnetic field sensor. The integrated circuit includes an isolation material layer over the first magnetic field sensor and a sintered metal layer over the isolation material layer. The first magnetic field sensor is configured to sense a magnetic field generated by a current passing through the sintered metal layer.
Abstract:
A feedback control circuit comprises an adjustable element, a main signal path and a feedback control loop. The adjustable element is configured to offset a signal in accordance with an offset control signal and output an offset signal. The main signal path comprises a first comparator to process the offset signal to output a main signal. The feedback control loop comprises a second comparator to process the offset signal to output a tracking signal, a first signal evaluator to evaluate the tracking signal and a first controller to output the offset control signal based on the evaluated tracking signal. The feedback control loop further comprises a second signal evaluator to detect a difference between a signal property of the main signal and the tracking signal and a second controller to control one of the comparators or the adjustable element such that the difference is reduced.
Abstract:
A vertical Hall sensor includes first and second vertical Hall effect regions in a semiconductor substrate, with first and second pluralities of contacts arranged at one side of the first or second vertical Hall effect regions, respectively. The second vertical Hall effect region is connected in series with the first vertical Hall effect region regarding a power supply. The vertical Hall sensor further includes first and second layers adjacent to the first and second vertical Hall effect regions at a side other than a side of the first or second pluralities of contacts. The first and second layers have different doping properties than the first and second vertical Hall effect regions and insulate the first and second vertical Hall effect regions from a bulk of the semiconductor substrate by at least one reverse-biased p-n junction per vertical Hall effect region during an operation of the vertical Hall sensor.
Abstract:
A system including a first circuit and a second circuit. The first circuit includes analog components configured to receive an input signal and provide an output signal based on the input signal. The second circuit is configured to measure characteristics of the output signal to test the first circuit. At least one of the output signal and another output signal is fed back to provide the input signal and generate an oscillation in the output signal.
Abstract:
In an embodiment, a method for sensing a body includes measuring an impedance of a body occupying a seat over a plurality of frequencies and comparing the measured impedance of the body with a predefined body model. The method also includes determining whether the predefined body model corresponds to the measured impedance of the body.
Abstract:
The disclosed invention provides a structure and method for easily measuring capacitive and/or resistive components of a sensor system. In one embodiment, the structure comprises a signal generator configured to output a load current to a measurement element containing measurement sensor elements and a parasitic capacitance. A controllable excitation voltage is generated, via integration of the load current on the parasitic capacitance, and output to the measurement sensor elements having capacitive and resistive components. The controlled voltage through the measurement device may be manipulated to cause the capacitive and resistive components to exhibit a transient effect. The resulting output current, provided from the measurement device therefore has transient response characteristics (e.g., the settling time, amplitude) that can be selectively measured by a measurement circuit to easily determine values of the capacitive and resistive measurement elements. Furthermore, dedicated demodulation techniques may be used to measure the capacitive and resistive components.
Abstract:
A system for capacitive object recognition including a pair of electrodes, one of the electrodes having an adjustable parameter, and a controller modeling current pathways formed by interaction of an object with an electric field between the pair electrodes as a network of capacitors. The controller is configured to set the adjustable parameter to a first setting and to apply a set of alternating current voltages to the pair electrodes and measure a resulting first set of current values at each of the electrodes, configured to set the adjustable parameter to a second setting and apply the set of alternating current voltages to the pair of electrodes and measure a resulting second set of current values at each of the electrodes, and configured to determine values for up to all capacitors of the network of capacitors based on the first and second sets of current values.