Abstract:
A method for coupling high-frequency energy, in particular for microwave circuits, to a nanoscale junction involves placing a bias-T outside of the tip and sample circuits of a scanning probe microscope and connecting a portion of a sample of analyzed semi-conductor through an outer shielding layer of coaxial cable so as to complete a circuit with minimal involvement of the sample. The bias-T branches into high and low-frequency circuits, both of which are completed and, at least the high-frequency circuit, does not rely on grounding of implements or other structure to accomplish said completion.
Abstract:
Field emission devices utilizing capacitive ballasting are described with possible uses in industry. The preferred device utilizes opposing electrodes, each with a dielectric layer and a plurality of conductive islands which serve to exchange electrons, generating an oscillatory current. Ideally these islands are dome-shaped and made of a refractory metal such as tungsten of molybdenum. Through proper use and selection of materials, electrical fields with densities of 1014 A/m2 are capable of being generated.
Abstract:
An apparatus for high speed gating of electric current based on the resonant interaction of tunneling electrons with optical fields is disclosed. The present invention biases an electron-emitting tip with a DC voltage source and focuses an output from a laser on the electron-emitting tip to stimulate electron emission from the tip. The electron emission creates an electrical signal that is coupled to circuitry for further processing. In accordance with the present invention, various methods of coupling the electrical signal from the electron-emitting tip are disclosed, as are various methods of reducing the magnitude of the laser output needed to stimulate electron emission, and methods of enhancing the static current density.
Abstract:
In order to meet the needs of, in particular, the semi-conductor industry as it requires finer lithography nodes, a method of feedback control for scanning probe microscopy generates a microwave frequency comb of harmonics in a tunneling junction (10) between a probe tip electrode (80) and sample electrode (20) by irradiating the junction with mode-locked pulses of electromagnetic radiation from a laser (90). Utilizing power measurements within one or more harmonics within the microwave frequency comb, the tip-sample distance in the tunneling junction may be regulated by a feedback control (40) utilizing an extremum-seeking algorithm for maximum efficiency and avoid tip crash when used with resistive samples. Ideally, no externally provided DC bias is required to use the method. Utilization of this method contributes to true sub-nanometer resolution of images of carrier distribution in resistive samples such as semi-conductors.
Abstract:
In order to meet the needs of the semi-conductor industry as it requires finer lithography nodes, a method of feedback control for scanning probe microscopy generates a microwave frequency comb of harmonics in a tunneling junction by irradiating the junction with mode-locked pulses of electromagnetic radiation. Utilizing power measurements within one or more harmonics, the tip-sample distance in the tunneling junction may be regulated for maximum efficiency and avoid tip crash when used with resistive samples. Optionally, no DC bias is required to use the method. Utilization of this method contributes to true sub-nanometer resolution of images of carrier distribution in resistive samples such as semi-conductors.
Abstract:
A control methodology for scanning tunneling microscopy is disclosed. Instead of utilizing Integral-based control systems, the methodology utilizes a dual-control algorithm to direct relative advancement of a STM tip towards a sample. A piezo actuator and stepper motor advances an STM tip towards a sample at a given distance until measuring a current greater than or equal to a desired setpoint current. Readings of the contemporaneous step are analyzed to direct the system to change continue or change direction and also determine the size of each step. In simulations where Proportion and/or Integral control methodology was added to the algorithm the stability of the feedback control is decreased. The present methodology accounts for temperature variances in the environment and also appears to clean and protect the tip electrode, prolonging its useful life.
Abstract:
A microwave frequency comb (MFC) is produced when a mode-locked ultrafast laser is focused on the tunneling junction of a scanning tunneling microscope (STM). The MFC consists of hundreds of measureable harmonics at integer multiples of the pulse repetition frequency of the laser, which are superimposed on the DC tunneling current. In Scanning Frequency Comb Microscopy (SFCM) the tip and/or sample electrode of the STM is moved vertically and laterally so that the power in the MFC may be measured at one or more locations on the surface of the sample and, from the power, carrier density, and other characteristics, of the sample may be calculated. SFCM is non-destructive of the sample. While many systems are possible to practice SFCM, a preferred apparatus is disclosed.
Abstract:
A method for coupling high-frequency energy, in particular for microwave circuits, to a nanoscale junction involves placing a bias-T outside of the tip and sample circuits of a scanning probe microscope and connecting a portion of a sample of analyzed semi-conductor through an outer shielding layer of coaxial cable so as to complete a circuit with minimal involvement of the sample. The bias-T branches into high and low-frequency circuits, both of which are completed and, at least the high-frequency circuit, does not rely on grounding of implements or other structure to accomplish said completion.
Abstract:
A current detector for detecting the high frequency current flowing in a conductor includes a coil of high resistivity material wound around an non-ferromagnetic core. The coil is arranged in a substantially closed loop configuration around the conductor carrying the current to be measured. The ratio of the winding spacing to the cross sectional area of the coil is maintained constant over the length of the winding. A shield of high resistivity material surrounds the coil and is spaced from the coils and the shield has a gap oriented along an azimuth of the closed loop winding and directed orthogonal to the net current direction of the current induced in the coil. The ends of the coil are coupled to a high impedance voltage detector through high resistivity leads and a relatively low value resistor is coupled between the leads to reduce the quality factor. The current detector may be used to detect current flowing in a human body due to the absorption of high frequency incident radiation as an indication of the specific absorption rate of such radiation.