Abstract:
A method of improving the detection of nuclear weapons in cargo containers. The container moves through an imaging region. An x-ray source emits a cone beam through the imaging region and to two or more detector columns, each detector column defining a fan beam. This hardware combines (1) the use of at least two detector assemblies, (2) use of both the current method and the photon counting method to determine x-ray intensities, and (3) use of large detector elements to increase the measured x-ray intensity by a typical factor of 270. The x-ray intensity for a pixel is read by each detector assembly at the appropriate time and the resulting x-ray intensities from each detector assembly are summed. A method of detecting a nuclear weapon includes identifying the nuclear device as the area of the image wherein a high absorption area is surrounded by a lower absorption area.
Abstract:
An x-ray source emits a cone beam a rapidly rotating, x-ray-opaque disc with four narrow radial slots. The slots break the cone beam into fan beams that are emitted to an x-ray-opaque plate with a narrow slit. As each fan beam moves across the plate, the slit produces a scanning x-ray pencil beam. The backscatter detector is mounted adjacent to the plate and has a slightly larger slit that is aligned with the plate slit. The pencil beam enters the object space through the detector slit. The pencil beam moves rapidly in a line across the object space, 20 cm in 0.1 second. Simultaneously, the assemblage of x-ray source, disc, plate, and detector moves slowly in the x direction at 1 mm in 0.05 second. Thus, the raster scan of the 20 cm×20 cm region is accomplished in 10 seconds.
Abstract:
The apparatus has an x-ray source that emits an x-ray cone beam through a tubular, x-ray-blocking guide to a planar template with a small pinhole to produce a pencil beam. The template is movable so the pencil beam can scan the target region to be imaged. Between the template and target region is an x-ray detector assembly with a plastic scintillator. The scintillator has an opening about the same size and shape as the target region that allows the pencil beam to pass to the target region. Photo-multiplier detectors receive the light generated by the backscattered x-rays in the scintillator. The method of the present invention employs the apparatus. Multiple x-rays source locations permit the generation of 3D images.
Abstract:
A Laminography system with x-ray source and a detector assembly. The x-ray source uses a narrow, deflected pencil beam to scan to a linear target. An x-ray cone beam detected by the detector assembly is produced where the electron beam strikes the target. The target is a layer of high-emitting material that is partitioned with narrow regions of low-emitting material, where the low flux intensity is sufficiently low to be easily distinguished from the flux intensity of the high-emitting material. The target may be constructed as a discontinuous layer of high-emitting material applied to a substrate of low-emitting material, or as strips of low-emitting material applied to a continuous layer of high-emitting material.
Abstract:
An x-ray inspection system for automatically detecting nuclear weapons materials generates a high energy x-ray fan beam or a traveling x-ray pencil beam that traverses an object under inspection. An x-ray detector detects x-ray energy that passes through the object and provides a detected signal indicative thereof. The detected signal is processed to detect the presence of an area of very high x-ray attenuation within the object under inspection, which is indicative of nuclear weapons materials. Because of the high atomic number (Z) and high density of nuclear weapons materials Uranium and Plutonium, both of these materials attenuate (i.e., absorb) incident x-rays significantly more than ordinary materials. That is, very high Z materials such as nuclear weapons materials, produce no x-rays outside of their block of material because the x-rays are self absorbed within the very high Z materials. Therefore, these materials can be detected by a transmission detectors, or by combining the readings from transmission and scatter detectors, if a pencil beam system is employed.
Abstract:
Transmission and scatter detectors for an x-ray inspection system preferably employing a moving pencil beam comprise a solid plastic scintillating material having a front planar surface that is impinged by incident x-ray energy. The detectors also include light detectors that are cooperatively mounted to the plastic scintillating material to detect photons within the plastic scintillating material created in response to x-rays incident on the front planar surface. The detector may be a transmission detector or a scatter detector. The detectors of the present invention are relatively thin in comparison to prior art detectors, which allows shielding to be reduced. In addition, the detectors of the present invention have a greater efficiency of detection in comparison to the prior art detectors.
Abstract:
An improved X-ray inspection system comprises a pulsed X-ray source configured to emit short, X-ray pulses for reducing afterglow noise. A rotating cylindrical collimator limits the X rays to a pencil-beam, which is directed across and through an object prior to interception by a detector. The detector comprises a plurality of scintillating screens optically coupled to photoemissive detecting elements. When the short X-ray pulses generated by the source are intercepted by the detector, the outputs of the detecting elements are sampled for only a short period of time, which sampling period is immediately followed by a substantially longer quiescent period of time during which the elements are not sampled. Therefore, only a slight portion of the typical afterglow noise occurs during measurement of a useful X-ray signal.
Abstract:
A method and apparatus for creating image information for objects inspect with penetrating radiation which utilizes a flying spot scanner of reduced mass. Objects are scanned with penetrating radiation along curved scan lines. The flying spot scanner which effects such scanning has a stationary absorber plate having a fixed slit in it which is curved, as well as a chopper wheel having radially oriented slits. As the chopper wheel rotates, the radially oriented slits traverse the projection of the radiation passing through the fixed slit, and because this slit is curved, the radial slits may be of reduced length, and the chopper wheel may be of reduced mass. The detected radiant energy is divided into pixels, and the pixels are addressed to a utilization means such as a memory or a display in such manner that the pixels which correspond to a scan line of the object define a curved line in the utilization means which has the same shape as the curved scanning line.
Abstract:
Information is derived from a selected fluorescent radiation line produced when an object is illuminated by a flying spot scanner. The illuminating radiation has an energy level sufficient to produce the fluorescent line when targeted components of the object are present and illuminated. A detector senses a fluorescent radiation line emitted from the targeted components to generate electrical fluorence based signals.
Abstract:
A method of imaging for enhancing detection of cracks or flaws in an object using penetrating radiation is disclosed wherein a contrast medium is applied to an object before illumination and scatter radiation is detected from the object. This is achieved by employing a flying spot scanner and a backscatter imaging technique allowing imaging of objects which are not completely accessible, e.g. imaging the object where only one side accessible.