摘要:
An improved digital image sampling arrangement samples only one pixel of a predetermined region of pixels and assigns a density value to that pixel. The remaining, unsampled pixels of the region are then allocated density values based on the value of the sampled pixel using either a simple algorithm or an extrapolation algorithm. This improved arrangement provides more precise information about the sampled image than a prior art technique of merely enlarging each pixel by a predetermined factor.
摘要:
An imaging device for increasing the ability to recognize, in x-ray produced images, materials of low atomic number. A flying spot scanner illuminates an object to be imaged in a raster pattern; the flying spot repeatedly sweeps a line in space, and the object to be imaged is moved so that the illuminating beam intersects the object. At least a pair of x-ray detectors are employed, each pair associated with signal processing apparatus and a display. The two detectors employed (and the associated electrons and display) are selected from a set of three which includes a transmitted detector located at the line in space which is repeatedly traversed by the pencil beam, a forward scatter detector which is located further from the x-ray beam than the object to respond to photons scattered by the object being illuminated out of the path of the beam, and a back scatter detector which is located closer to the x-ray source than the object being imaged and also arranged to detect photons scattered out of the beam path by the object. In another embodiment of the invention all three detectors and their associated electronics/displays are employed.
摘要:
Penetrating radiant energy imaging system employs a scanning pencil beam of radiant energy. In some embodiments of the invention, the cross-section of the beam varies in a controlled manner; in a disclosed embodiment the beam has either one or another cross-section. A detector responds to incident radiant energy passing through a target and provides signals to a processor which produces from the signals a pair of image arrays, each array consisting of signals generated by the scanning pencil beam of one cross-section or the other. Increased contrast and/or resolution is provided by selectively combining the signals in the image arrays. In other embodiments of the invention, specifically related to tomographic imaging, rather than controlling the cross-section of the radiant energy at the source, the cross-section of the radiant energy is controlled at the detector field. In these embodiments, the detector field is occupied by multiple detectors and one or more of the detectors has a field of view which is different from the field of view of other detectors.
摘要:
An x-ray source emits a cone beam to a rotating, x-ray-opaque disc with radial slots. The slots break the cone beam into fan beams that are emitted to an x-ray-opaque plate that produces a scanning x-ray pencil beam as each fan beam moves across a slit in the plate. A backscatter detector is adjacent to the plate. A collimator is adjacent. The pencil beam enters the object space through slits in the detector and collimator. The pencil beam moves rapidly in the y direction in the object space, producing backscatter x-rays from the object. The collimator only passes backscattered x-rays at a selected distance from the detector. Simultaneously, the assemblage of x-ray source, disc, plate, detector, and collimator moves slowly in the x and z directions. The backscattered x-rays passed by the collimator are processed to form planar images at various depths in the object space.
摘要:
A dual-energy x-ray source located a distance of one half of the maximum width of the subject from the subject emits a cone beam to a horizontal slit in an x-ray-blocking sheet, producing a fan beam that is chopped into a pencil beam by a rotating disk with radial slots. The pencil beam sweeps a subject, producing backscatter read by a plastic scintillator detector situated very close to and curved around the sides of the subject. The entire assembly translates vertically to produce a complete image of the subject. Pencil beam area is increased farther from the center by increasing the width of the slit toward both ends and increasing the width of the slots toward the outer end. High and low peak x-ray energies of 50 KeV or more and 30 KeV or less, respectively, enable differentiation between innocent and contraband materials that both contain low Z materials.
摘要:
An imaging system and method for taking an image of an object. The imaging system comprises a mechanism that propels the object linearly in a direction of motion through an imaging region that has a top, bottom, front, and rear; an x-ray source located below the bottom, aligned with the front, and emitting an x-ray cone beam to the imaging region; and a plurality of x-ray detector assemblies, each of the detector assemblies including a linear row of detectors above and parallel to the top and perpendicular to the direction of motion, and a linear column of detectors outside of and parallel to the rear right side and extending at an angle to the direction of motion, wherein each of the detector assemblies defines an x-ray fan beam within the x-ray cone beam. A second system embodiment duplicates the x-ray source/detector assemblage and rotates the second assemblage by 90° around the object. In the method, a number of x-ray fan beams are emitted from a single location at different angles and the object is propelled linearly through the fan beams. The x-ray intensity of each fan beam passing through a voxel is read and those x-ray intensities are combined in accordance to standard laminography practice to generate an image for the voxel. In this way, images for all voxels are generated and used to produce an image of the entire object. With the second system embodiment, two sets of voxel images are generated, which allows views from a full 180° for all voxels in the object. Applying computer tomography reconstruction algorithms can produce CT images.
摘要:
A method for substantially reducing the contribution of dense regions of an object while less dense regions of the object are being processed in a laminography blurring system. The method comprises the steps of positioning an x-ray source with a moving fan beam on one side of the object; positioning a row of x-ray detectors on the side of the object opposite that of the x-ray source; sequentially emitting a plurality of x-ray fan beams along an x-ray source line and directed through a focused pixel of the object to the row of x-ray detectors; sampling the x-ray detectors once for each of the fan beams for a total of it samples of intensity Ii; determining the maximum intensity Imax from the samples Ii; choosing a parameter P greater than one; retaining only those samples Ii that are greater than or equal to Imax/P; summing the retained samples; and normalizing the resultant sum. Normalizing can include multiplying the sum by the total number of samples divided by the number of retained samples.
摘要翻译:一种用于在层析模糊系统中正在处理物体的较小密度区域的情况下,大大减少物体的致密区域的贡献的方法。 该方法包括以下步骤:将X射线源与移动的扇形光束定位在物体的一侧上; 将一排X射线检测器放置在物体的与X射线源相反的一侧; 沿X射线源线顺序地发射多个x射线扇形束,并将该物体的聚焦像素引导到X射线检测器行; 对于每个风扇光束对x射线检测器进行一次采样,总共测量强度I I i的样本; 从样品I I i确定最大强度I最大值 SUB>; 选择参数P大于1; 仅保留大于或等于I最大值/ P的那些样品I SUB; 保留样品的总和; 并归一化所得和。 归一化可以包括将总和除以总样本数除以保留样本数。
摘要:
A personnel x-ray inspection system includes an electron source that provides a pencil beam of electrons. An electromagnet assembly receives the pencil beam of electrons and directs the beam of electrons along a line to form a scanning redirected beam under the control of a scan command signal. The scanning redirected beam strikes a target and generates a cone of x-rays that moves along a target line as a result of the scanning redirected beam. A collimator receives the scanning cone of x-rays and generates a collimated traveling pencil beam, which is directed to a person under inspection. A moving platform translates the person under inspection through the collimated traveling pencil beam. A backscatter detector detects backscattered x-rays, and provides a backscattered detected signal indicative thereof. A system controller provides the scan command signal, and also receives and processes the backscattered detected signal.
摘要:
A high-energy X-ray inspection system comprises an X-ray source for generating high energy X rays for inspecting the contents of large objects. The source is contained within an enclosure having an integrally-formed precollimator device that limits the radiation emitted from the source to form a "fan-beam" of X rays. A novel rotating cylindrical collimator converts the fan-beam into a pencil-beam of X rays, which is further limited by a fixed-slit collimator. The high-energy pencil-beam penetrates the entire area of an object and is intercepted by a detector, which transforms the X rays into image data for presentation on a display screen.
摘要:
An inspection system using penetrating radiation wherein pixels corresponding to transmitted radiation which has been attenuated to at least a predetermined level are displayed in a first color. Pixels which correspond to radiation which has been backscattered to a least predetermined level are displayed in a second color, and pixels which correspond to the remainder of the transmitted radiation are displayed in a third color. Additionally, the brightness of the color of each pixel is controlled in dependence on how far above or below the predetermined level the detected transmitted or scattered signal is.