Abstract:
A medical lead system includes a lead body, a plurality of electrical conductors, and a plurality of electrodes. The lead body may include a distal end and a proximal end defining a longitudinal axis of the lead body. The plurality of electrical conductors extending about the longitudinal axis of the lead body. The plurality of electrodes is positioned around an outer perimeter of the lead body. An inner surface of each of the plurality of electrodes defines an inner perimeter. Each respective electrode of the plurality of electrodes is electrically coupled to a respective electrical conductor of the plurality of electrical conductors. Each electrode of the plurality of electrodes includes at least one electrode locking feature extending into the lead body from the inner perimeter.
Abstract:
A connector assembly, for example, employed in an extension of an implantable medical electrical system, may be contained in a flexible insulative sleeve so that a bore thereof extends along a longitudinal axis of the sleeve with an opening being formed by a distal terminal end of the sleeve. The assembly includes a plurality of isolation ring components interspersed among a plurality of contact ring components, wherein each of a plurality of conductor components has a first end coupled to a corresponding contact ring component, and a curvature formed along a length thereof, which length extends proximally from the coupled first end and into a proximal portion of the sleeve. To facilitate routing of the conductor component lengths, either each isolation ring component may include at least one guide, or a flexible inner insulative sleeve of the assembly may have longitudinally extending channels formed in an outer surface thereof.
Abstract:
Various embodiments of this disclosure concern a lead end containing a slotted member. A slotted member can have a plurality of slots extending along at least a portion of the length of the slotted member, each of the slots having a respective positioning feature, the plurality of slots having a plurality of positioning features at different longitudinal positions along the length of the slotted member. The lead end can further include a plurality of conductors at least partially within the plurality of slots, each slot of the plurality of slots containing at least a respective one of the plurality of conductors, the plurality of conductors electrically connecting exposed electrical elements of both ends of the lead.
Abstract:
Shielded sheaths are placed over implantable medical leads and/or implantable medical lead extensions to provide shielding from electromagnetic energy and to prevent heating at the electrodes. The shielded sheaths include insulative bodies with shield layers such as conductive braided wire or conductive foil tubular structures. The shielded sheath may be implanted at the time of implanting the lead and/or lead extension. The shielded sheath may also be implanted at a later time after the lead and/or lead extension has previously been implanted. The shielded sheath may be anchored onto the lead or lead extension.
Abstract:
An introducer assembly that may be employed to implant a medical device includes an introducer shaft, and an anchor sleeve and a deployment tool mounted on the shaft. According to some methods, the sleeve is deployed onto an elongate body of the medical device, after the body has been advanced through a lumen of the introducer shaft and to an implant site within a body of a patient, by pulling the introducer shaft proximally, out from the body of the patient, while holding the deployment tool in place, relative to the advanced body of the device.
Abstract:
Various embodiments of this disclosure concern a lead end having an inner support. Such a lead can include a first end, a second end, a main body, and a plurality of exposed electrical elements on each of the lead ends. A metal support can be contained within the first end, the metal support comprising a plurality of longitudinal members and a plurality of cross members between the longitudinal members, the metal support having an interior space. The first lead end can further include polymer fill within the interior space of the metal support and encapsulating at least a substantial portion of the metal support, the polymer fill defining at least some of the exterior surface of the first end between the exposed electrical elements of the first end.
Abstract:
Dislodging an anchor sleeve from an implanted device may be accomplished with a tool that includes a support portion and a sleeve dislodging element, wherein a collar of the support portion engages a distal end of the anchor sleeve while the dislodging element, positioned at a proximal end of the sleeve, is moved toward the collar to dislodge the anchor sleeve. The tool preferably includes a handle member held in sliding engagement with a base member, for example, by a snap-fit, wherein the support portion is part of the handle member, and a distal segment of the base member is terminated by the dislodging element. A tool kit may include a plurality of base members, each one including a different type of dislodging element, from which an operator may select for snap-fitting to a handle member of the kit.