Abstract:
In one example, the disclosure relates to a method comprising receiving at least one electrical stimulation parameter value defining electrical stimulation for delivery via one or more electrodes to a tissue site, and determining, via one or more processors, a volume of sub-activation threshold impact for tissue from the delivery of the electrical stimulation to the tissue site.
Abstract:
Various embodiments concern assessing a degenerative cognitive disorder of a patient based on a plurality of episodes of non-motor epileptiform bioelectrical activity. The non-motor epileptiform bioelectrical activity can be detected from one or more bioelectrical brain signals. A worsening cognitive disorder may be indicated by an increase in one or more of intensity, duration, and frequency of occurrence of the episodes of non-motor epileptiform bioelectrical activity. A therapy can be delivered to reduce one or more of intensity, duration, and frequency of occurrence of the episodes of non-motor epileptiform bioelectrical activity. The delivery of the therapy can be controlled based on the plurality of episodes of non-motor epileptiform bioelectrical activity.
Abstract:
In one example, the disclosure relates to a method comprising receiving at least one electrical stimulation parameter value defining electrical stimulation for delivery via one or more electrodes to a tissue site, and determining, via one or more processors, a volume of sub-activation threshold impact for tissue from the delivery of the electrical stimulation to the tissue site.
Abstract:
This disclosure relates to devices, systems, and methods for autotitrating stimulation parameters. In one example, a method includes controlling an implantable medical device to deliver electrical stimulation to a patient according to a plurality of electrical stimulation parameter sets, each electrical stimulation parameter set of the plurality of electrical stimulation parameter sets defining a respective electrical stimulation signal deliverable to the patient, obtaining, by one or more processors and for each electrical stimulation parameter set of the plurality of electrical stimulation parameter sets, a respective signal representative of an electrical response sensed from the patient in response to the electrical stimulation delivered to the patient according to the respective electrical stimulation parameter set, and determining, by the one or more processors and based on the obtained respective signals, a primary electrical stimulation parameter set that defines electrical stimulation therapy deliverable to the patient by the implantable medical device.
Abstract:
The disclosure describes devices, systems, and techniques for identifying and treating bladder dysfunction. In one example, a method includes identifying one or more focal points at respective locations of bladder tissue of a bladder of a patient, the one or more focal points initiating coordinated contractions of a detrusor muscle. The method may also, or alternatively, include ablating, for each of the one or more focal points, a respective portion of the bladder tissue at the respective location of the focal point. Ablation of these targeted portions of the bladder tissue may reduce the coordinated contractions of the detrusor muscle and alleviate overactive bladder symptoms.
Abstract:
Devices, systems, and techniques for analyzing video information to objectively identify patient behavior are disclosed. A system may analyze obtained video information of patient motion during a period of time to track one or more anatomical regions through a plurality of frames of the video information and calculate one or more movement parameters of the one or more anatomical regions. The system may also compare the one or more movement parameters to respective criteria for each of a plurality of predetermined patient behaviors and identify the patient behaviors that occurred during the period of time. In some examples, a device may control therapy delivery according to the identified patient behaviors and/or sensed parameters previously calibrated based on the identified patient behaviors.
Abstract:
Techniques for delivering electrical stimulation therapy comprising a complex variation to at least one electrical stimulation parameter are described. In one example, processing circuitry of an implantable medical device (IMD) identifies a plurality of electrical stimulation parameters for at least one pulse train of electrical stimulation. The processing circuitry defines a complex variation to at least one electrical stimulation parameter of the plurality of electrical stimulation parameters. The processing circuitry modifies the at least one pulse train of electrical stimulation by introducing the complex variation to the electrical stimulation parameter function and controls a stimulation generator of the IMD to generate, as modified, the at least one pulse train of electrical stimulation.
Abstract:
In some examples, a medical device delivers electrical stimulation to the external portion of the globus pallidus of a brain of a patient in order to treat a sleep impairment of the patient. In some examples, the electrical stimulation may be delivered via one or more electrodes implanted in the GPe of the brain. In some examples, an electrical stimulation device is configured to deliver electrical stimulation therapy to the GPe based on detection of a sleep state of a patient. The sleep state may include, for example, a state in which the patient is awake and intending on sleeping, is awake and attempting to sleep or has initiated sleep. In addition, in some examples, an electrical stimulation device is configured to deliver electrical stimulation therapy to the GPe based on detection of an awake state of a patient.
Abstract:
In some examples, electrical stimulation is delivered to a patient such that selective termination of the stimulation causes a therapeutic effect in the patient after termination of the electrical stimulation to the patient. The electrical stimulation may be insufficient to produce a desired therapeutic effect in the patient during stimulation, but sufficient to induce a post-stimulation desired therapeutic effect following termination of the stimulation. In some examples, the electrical stimulation may be sub-threshold electrical stimulation. In some examples, the desired therapeutic effect may alleviate bladder dysfunction, bowel dysfunction, or other disorders. The stimulation may be selectively terminated in response to one or more therapy trigger events to induce the post-stimulation therapeutic effect.
Abstract:
In some examples, the disclosure describes devices, systems, and techniques for treating pain and/or pelvic floor dysfunction of a patient. For example, a method for treating pelvic floor dysfunction in a patient may include delivering, via a medical device, a therapy to one or more nerve fibers, wherein the therapy is configured to at least temporarily deactivate the one or more nerve fibers; and determining that the one or more nerve fibers was at least temporarily deactivated by delivering the therapy.