Abstract:
An embolic protection device includes a first filter configured to be disposed in a first vessel and a second filter configured to be disposed in a second vessel. A first tether extends from a proximal end of the first filter and a first magnet is coupled to the first tether. A second tether extends from a proximal end of the second filter and a second magnet is coupled to the second tether. The device is configured such that when the first filter is disposed in the first vessel and the second filter is disposed in the second vessel, the first magnet and the second magnet are magnetically coupled to each other to couple the first tether to the second tether.
Abstract:
Aspects of the disclosure relate to devices and methods for preparing an existing, implanted prosthetic aortic valve for subsequent prosthetic aortic valve implantation. To prepare the existing valve, a valve preparation device is delivered to the valve and valve leaflets are severed either via mechanical cutting or electrodes so that the leaflets cannot obstruct a blood flow path once a prosthetic valve is subsequently implanted within the valve. Similarly, in alternate embodiments, devices and methods of the disclosure can be used for preparing a native aortic valve for delivery and implantation of a prosthetic valve.
Abstract:
Embodiments hereof relate to a transcatheter valve prosthesis including a tubular fabric body, a first or inflow tubular scaffold attached to a first end portion of the tubular fabric body, and a second or outflow tubular scaffold attached to a second end portion of the tubular fabric body. A prosthetic valve component is disposed within and secured to an intermediate portion of the tubular fabric body that longitudinally extends between the first and second end portions of the tubular fabric body. The intermediate portion is unsupported such that neither of the first and second tubular scaffolds surrounds the intermediate portion of the tubular fabric body. The intermediate portion may include one or more windows for coronary access and may include one or more commissure reinforcement members coupled thereto to provide support for the prosthetic valve component.
Abstract:
Embodiments hereof relate to a transcatheter valve prosthesis including a tubular fabric body, a first or inflow tubular scaffold attached to a first end portion of the tubular fabric body, and a second or outflow tubular scaffold attached to a second end portion of the tubular fabric body. A prosthetic valve component is disposed within and secured to an intermediate portion of the tubular fabric body that longitudinally extends between the first and second end portions of the tubular fabric body. The intermediate portion is unsupported such that neither of the first and second tubular scaffolds surrounds the intermediate portion of the tubular fabric body. The intermediate portion may include one or more windows for coronary access and may include one or more commissure reinforcement members coupled thereto to provide support for the prosthetic valve component.
Abstract:
A system for replacing a heart valve of a patient. The system includes a delivery device and a prosthetic heart valve. The system is configured to be transitionable between a loaded state, a partially deployed state and a deployed state. In the loaded state, the prosthetic heart valve engages a coupling structure and is compressively retained within a primary capsule, which constrains the prosthetic heart valve in a compressed arrangement. In the partially deployed state, the prosthetic heart valve engages the coupling structure and is compressively retained within a secondary capsule, which constrains the prosthetic heart valve to a partially deployed arrangement. The partially deployed arrangement is less compressed than the compressed arrangement and less expanded than a deployed arrangement. In the deployed state, the primary and secondary capsules are retracted from over the prosthetic heart valve, which expands to the deployed arrangement and is released from the coupling structure.
Abstract:
The disclosure includes methods, systems and devices for severing and optionally removing at least a portion of heart valve leaflets. Leaflets can be partially removed or entirely removed or otherwise, the leaflets can be severed or splayed in such a way as to avoid coronary blockage, LVOT obstruction, or access challenges in procedures where a prosthetic valve is to be implanted within a previously implanted prosthetic valve. The disclosure also relates to numerous devices for and methods of disabling one or more valve ligating devices to provide an unobstructed valve opening so that a prosthetic heart valve can be implanted within the opening. The ligation device(s) is disabled either by removing the ligation device(s) or severing one leaflet so that ligated leaflets can be separated. In some embodiments, the ligation device(s) are severed to disable the ligation device(s).
Abstract:
An embolic protection device includes a shaft, a first magnet fixedly coupled to a distal portion of the shaft, a second magnet slidingly coupled to the shaft proximal to the first magnet, and a filter including a distal portion coupled to the first magnet and a proximal portion coupled to the second magnet. The first and second magnets are magnetically attracted to each other such that in a radially compressed configuration of the filter, the second magnet is spaced from the first magnet a first distance, and in a radially expanded configuration of the filter, the second magnet slides towards the first magnet such that the second magnet is spaced a second distance from the first magnet, wherein the second distance is smaller than the first distance.
Abstract:
Aspects of the disclosure include methods, systems and devices for severing and optionally removing at least a portion of heart valve leaflets. Leaflets can be partially removed or entirely removed or otherwise, the leaflets can be severed or splayed in such a way as to avoid coronary blockage, LVOT obstruction, or access challenges in procedures where a prosthetic valve is to be implanted within a previously implanted prosthetic valve. Aspects of the disclosure also relate to numerous devices for and methods of disabling one or more valve ligating devices to provide an unobstructed valve opening so that a prosthetic heart valve can be implanted within the opening. The ligation device(s) is disabled either by removing the ligation device(s) or severing one leaflet so that ligated leaflets can be separated. In some embodiments, the ligation device(s) are severed to disable the ligation device(s).
Abstract:
Aspects of the disclosure include methods, systems and devices for severing and optionally removing at least a portion of heart valve leaflets. Leaflets can be partially removed or entirely removed or otherwise, the leaflets can be severed or splayed in such a way as to avoid coronary blockage, LVOT obstruction, or access challenges in procedures where a prosthetic valve is to be implanted within a previously implanted prosthetic valve. Aspects of the disclosure also relate to numerous devices for and methods of disabling one or more valve ligating devices to provide an unobstructed valve opening so that a prosthetic heart valve can be implanted within the opening. The ligation device(s) is disabled either by removing the ligation device(s) or severing one leaflet so that ligated leaflets can be separated. In some embodiments, the ligation device(s) are severed to disable the ligation device(s).
Abstract:
An embolic protection device includes a shaft, a first magnet fixedly coupled to a distal portion of the shaft, a second magnet slidingly coupled to the shaft proximal to the first magnet, and a filter including a distal portion coupled to the first magnet and a proximal portion coupled to the second magnet. The first and second magnets are magnetically attracted to each other such that in a radially compressed configuration of the filter, the second magnet is spaced from the first magnet a first distance, and in a radially expanded configuration of the filter, the second magnet slides towards the first magnet such that the second magnet is spaced a second distance from the first magnet, wherein the second distance is smaller than the first distance.