Modular aortic arch prosthetic assembly and method of use thereof

    公开(公告)号:US11751988B2

    公开(公告)日:2023-09-12

    申请号:US18058348

    申请日:2022-11-23

    Abstract: A prosthetic assembly configured for endovascular placement within an aortic arch and method of use thereof. The prosthetic assembly includes a proximal aortic stent-graft prosthesis configured to be positioned within a proximal portion of the aortic arch adjacent to the brachiocephalic artery, a distal aortic stent-graft prosthesis configured to be positioned within a distal portion of the aortic arch adjacent to the left subclavian artery, a first branch stent-graft prosthesis configured to be positioned within the brachiocephalic artery and a second branch stent-graft prosthesis configured to be positioned in one of the left common carotid and the left subclavian artery. When deployed, a proximal end of the first branch stent-graft prosthesis is disposed within a lumen of the proximal aortic stent-graft prosthesis to proximally displace the ostium of the brachiocephalic artery. When deployed, a proximal end of the distal aortic stent-graft prosthesis is disposed within the distal end of the proximal aortic stent-graft prosthesis to form an overlap between the proximal and distal aortic stent-graft prostheses. The overlap is relatively increased by the first branch stent-graft prosthesis proximally displacing the ostium of the brachiocephalic artery.

    Docking graft for placement of parallel distally extending grafts assembly and method

    公开(公告)号:US11324582B2

    公开(公告)日:2022-05-10

    申请号:US16585722

    申请日:2019-09-27

    Abstract: The techniques of this disclosure generally relate to an assembly including a docking graft. The docking graft includes a main graft defining a main lumen, a first internal lumen within the main lumen, a second internal lumen within the main lumen, and a main docking lumen within the main lumen. The first and second internal lumens are configured to receive first and second bridging stent graft therein. The main docking lumen is configured to receive a tube graft therein. The first internal lumen, the second internal lumen, and the main docking lumen being parallel to one another and extending an entire length of the docking graft when the docking graft is in a relaxed configuration. The docking graft forms the foundation, or anchor device, for attachment of the first bridging stent graft, the second bridging stent graft, and the tube graft within the aorta.

    Stent-graft prosthesis with pressure relief channels

    公开(公告)号:US11284989B2

    公开(公告)日:2022-03-29

    申请号:US15960622

    申请日:2018-04-24

    Abstract: A stent-graft prosthesis for implantation within a body vessel includes a graft material, a frame, and a channel. The graft material includes a proximal end, a distal end, and a graft lumen extending between the proximal and distal ends. The frame is coupled to the graft material. The channel is configured to relieve pressure associated with pulsatile blood flow during implantation of the stent-graft prosthesis within a body vessel. The channel permits blood to flow from an upstream side of the stent-graft prosthesis to a downstream side of the stent-graft prosthesis when the stent-graft prosthesis is in a partially expanded configuration in the body vessel. The channel may be a plurality of channels.

    SINGLE MULTIBRANCH STENT DEVICE ASSEMBLY AND METHOD

    公开(公告)号:US20210346145A1

    公开(公告)日:2021-11-11

    申请号:US17380824

    申请日:2021-07-20

    Abstract: The techniques of this disclosure generally relate to an assembly including a single multibranch stent device. The single multibranch stent device includes a main body, a proximal coupling extending radially from the main body, and a distal coupling extending radially from the main body. The main body, the proximal coupling, and the distal coupling are permanently coupled to one another and the single multibranch stent device is a single piece. By forming the single multibranch stent device as a single piece, the single multibranch stent device can be deployed in a single deployment thus simplifying the deployment procedure.

    Guidewire with integral radiopaque markers

    公开(公告)号:US10722689B2

    公开(公告)日:2020-07-28

    申请号:US15149882

    申请日:2016-05-09

    Abstract: Embodiments hereof relate to a guidewire formed from an elongated shaft, at least a portion of the shaft having an outer layer, a plurality of channels formed through the outer layer, and an inner core. The outer layer is formed from a material non susceptible to erosion by an erosion agent and the inner core is formed from a radiopaque material susceptible to erosion by the erosion agent. When exposed to the erosion agent, core material adjacent to the channels is removed to form a pattern of integral radiopaque segments or markers with a plurality of voids therebetween. By controlling the location of channels and the rate of erosion of the core material, the pattern of integral radiopaque segments and voids allow for in situ measurement when viewed under fluoroscopy.

    MODULAR AORTIC ARCH PROSTHETIC ASSEMBLY AND METHOD OF USE THEREOF

    公开(公告)号:US20180153677A1

    公开(公告)日:2018-06-07

    申请号:US15830221

    申请日:2017-12-04

    Abstract: A prosthetic assembly configured for endovascular placement within an aortic arch and method of use thereof. The prosthetic assembly includes a proximal aortic stent-graft prosthesis configured to be positioned within a proximal portion of the aortic arch adjacent to the brachiocephalic artery, a distal aortic stent-graft prosthesis configured to be positioned within a distal portion of the aortic arch adjacent to the left subclavian artery, a first branch stent-graft prosthesis configured to be positioned within the brachiocephalic artery and a second branch stent-graft prosthesis configured to be positioned in one of the left common carotid and the left subclavian artery. When deployed, a proximal end of the first branch stent-graft prosthesis is disposed within a lumen of the proximal aortic stent-graft prosthesis to proximally displace the ostium of the brachiocephalic artery. When deployed, a proximal end of the distal aortic stent-graft prosthesis is disposed within the distal end of the proximal aortic stent-graft prosthesis to form an overlap between the proximal and distal aortic stent-graft prostheses. The overlap is relatively increased by the first branch stent-graft prosthesis proximally displacing the ostium of the brachiocephalic artery.

Patent Agency Ranking