摘要:
A system and method is provided for determining depth of interaction (DOI) information. The system and method includes a detector configured to generate DOI information as a result of radiation emitted from a radiation source. The system and method further includes a plurality of scintillator pixels forming a block, wherein the plurality of scintillator pixels have a first portion and a second portion. A first medium distributed in an alternating pattern of coupling and separation between each of the scintillator pixels in a first portion or second portion of the block is also provided. A plurality of sensors for detecting scintillation events across the plurality of scintillators based on the alternating pattern of coupling and separation between each of the scintillator pixels, wherein DOI information is provided by a position profile of the block, and an image processor for generating a 3 dimensional image from the DOI information are also included.
摘要:
A device for detecting ionizing radiation includes a radiation interaction region configured to generate light in response to an interaction with the ionizing radiation, an optical gain medium region in optical communication with the radiation interaction region and configured to amplify the light, and an energy source coupled to the optical gain medium region and configured to maintain a state of population inversion in the optical gain medium region. The optical gain medium region has an emission wavelength that corresponds with a wavelength of the light generated by the radiation interaction region.
摘要:
The present invention is a photodetector including improved photosensors configured of an array of small (sub-millimeter) high-density avalanche photodiode cells utilized to readout a single scintillator. Each photosensor comprises a plurality of avalanche photodiodes cells arranged in an (n×n) array of avalanche photodiode cells (where, n>1) that are coupled to a single scintillation crystal. The overall (n×n) array area as the photosensor is the same as the area of a face of the scintillator and each avalanche photodiode cell has a surface area that is not greater than one square millimeter. The photosensor is also configured to facilitate reading the output of each avalanche photodiode cell in the array. By reading out each small avalanche photodiode cell independently, the noise and capacitance are minimized and thereby provide a more accurate determination of energy and timing.
摘要:
A phantom and method are provided for co-registering a magnetic resonance image and a nuclear medical image. The phantom includes a first housing defining a first chamber configured to receive a magnetic resonance material upon which magnetic resonance imaging can be performed in order to produce the magnetic resonance image. The phantom also includes three or more second housings configured to be attached to the first housing, where the second housings each define a second chamber configured to receive a radioactive material upon which nuclear imaging can be performed in order to produce the nuclear medical image and upon which the magnetic imaging can be performed in order to produce the magnetic resonance image. The first chamber has a volumetric capacity that is larger than a volumetric capacity of each second chamber.
摘要:
A high-resolution nuclear imaging detector for use in systems such as positron emission tomography includes a monolithic scintillator crystal block in combination with a single photomultiplier tube read-out channel for timing and total energy signals, and one or more solid-state photosensor pixels arrays on one or more vertical surfaces of the scintillator block to determine event position information.
摘要:
A system and method is provided for determining depth of interaction (DOI) information. The system and method includes a detector configured to generate DOI information as a result of radiation emitted from a radiation source. The system and method further includes a plurality of scintillator pixels forming a block, wherein the plurality of scintillator pixels have a first portion and a second portion. A first medium distributed in an alternating pattern of coupling and separation between each of the scintillator pixels in a first portion or second portion of the block is also provided. A plurality of sensors for detecting scintillation events across the plurality of scintillators based on the alternating pattern of coupling and separation between each of the scintillator pixels, wherein DOI information is provided by a position profile of the block, and an image processor for generating a 3 dimensional image from the DOI information are also included.
摘要:
An emission tomography detector module and an emission tomography scanner are disclosed. In at least one embodiment, the emission tomography detector modules includes a scintillator to capture an photon, the scintillator emitting a scintillating light on capturing the photon; a first type of solid-state photodetector to detect the scintillating light; and a second type of solid-state photodetector to detect the scintillating light, wherein the first type of solid-state photodetector and the second type of solid-state photodetector are different with respect to a detecting property.
摘要:
A simple, low cost circuit with only passive components, and thus low power consumption, is provided for baseline restoration of an AC coupled signal. The circuit includes a passive network of diodes arranged in a star configuration and an RF-transformer. A differential signal strategy may be employed by including a differential amplifier at the input and output of the passive network.
摘要:
A method, process and apparatus for compensating for changes to the gain of photo detectors in a nuclear imaging apparatus is disclosed. Specifically, embodiments detect positron annihilation event pulses using photo detectors. Changes to the gain of the photo detectors are compensated for by determining the relationship of a detected event pulse peak with a target event pulse peak. Based on the difference between these two peaks, a corrected gain is determined in a closed-loop control system. The corrected gain can be used to compensate for temperature changes that can affect the gain of the photo detectors.
摘要:
A method is disclosed for stabilizing the gain of a PET detection system with a cooling unit. The method includes determining the temperature of at least one component of the PET detection system, comparing the actual gain with a reference value, and actuating the cooling unit to influence the temperature such that the gain tends to the reference value. In at least one embodiment, the reference value is determined by determining the temperature of the at least one component during a test measurement, determining the gain during the test measurement, determining a functional dependence of the gain on the temperature, and selecting the reference value based on the gain to be stabilized. Advantageously, in at least one embodiment the gain can be kept constant using the described method in a simple manner, with the influence of the temperature of the components being taken into account.