Abstract:
A multifocal ophthalmic lens has diffractive power produced by a plurality of concentric zones. The zones have radii that meet the conditionR.sub.0.sup.2 is not equal to R.sub.1.sup.2 -R.sub.0.sup.2where R.sub.0 is the radius of the central zone and R.sub.1 is the radius of the first annular zone.
Abstract:
A computerized docketing system for legal matters, comprising a database operatively arranged to store information related to the legal matters, including actions to be taken with respect to the legal matters, and due dates associated with the actions to be taken, an arithmetic logic unit operatively arranged to scan the database, compare each of the due dates with a reference date, and classify the due dates according to proximity of each of the due dates to the reference date, and, means for displaying different classifications of the due dates in different colors for the purpose of alerting a user of the system of matters requiring attention. A computerized method and apparatus for comparing two dates and alerting user of impending due date by changing color of one of the two dates. The method includes the steps of storing information related to a first date in a database, displaying the information related to the first date in a first color, programming a relationship between the first date and a second date via a user interface, comparing the first date and second date to determine if the programmed relationship is satisfied, and displaying the information related to the first date in a second color if the programmed relationship is satisfied. The apparatus includes a general purpose computer specially programmed to implement the steps of the method.
Abstract:
Devices and associated methods are disclosed for treating bone, and particularly bone tissue at the joints. Disclosed are implantable devices that can be used either alone or in combination with this augmentation or hardening material for the repair of bone defects and which are particularly suited for use at the joints, and even more particularly, suited for use at the subchondral bone level.
Abstract:
In one aspect, the present invention provides a method of designing a diffractive ophthalmic lens (e.g., an intraocular lens (IOL)) that includes providing an optic having an anterior refractive surface and a posterior refractive surface, wherein the optic provides a far-focus power (e.g., in a range of about 18 to about 26 Diopters (D)). A truncated diffractive structure can be disposed on at least one of the surfaces for generating a near-focus add power (e.g., in a range of about 3 D to about 4 D). And the diffractive structure can be adjusted so as to obtain a desired distribution of optical energy between the near and far foci for a range of pupil sizes.
Abstract:
In one aspect, the present invention provides a diffractive ophthalmic lens (e.g., a diffractive IOL) that includes an optic having an anterior surface and a posterior surface, where the optic provides a far focus. A frustrated diffractive structure comprising a plurality of diffractive zones is disposed on at least one of those surfaces so as to provide a near focus. Each zone is separated from an adjacent zone by a zone boundary that imparts an optical delay to the incident light. Further, at least two consecutive zone boundaries are configured such that a difference between their associated phase delays for at least one wavelength of the incident light is greater than about ¼ wavelength so as to direct a portion of the incident light to a location between the near and far foci.
Abstract:
In one aspect, the present invention provides methods for custom fabrication of IOLs. In some embodiments, such methods call for measuring one or more aberrations of a patient's eye, and determining the profile of at least one surface of an IOL that would ameliorate, and control those aberrations. The surface profile can then be imparted to a surface of a starting lens (or a lens blank) via ablation, e.g., by utilizing an excimer laser beam. In some other embodiments, the measured aberrations can be utilized to determine the profile of at least one surface of a wafer mold. A wafer mold having that surface profile can then be fabricated, e.g., by ablating a slab or an existing wafer of appropriate material, and the mold can be used to fabricate an IOL suitable for implantation in the patient's eye.
Abstract:
Methods and devices for inhibiting the dark shadow effect, known as dysphotopsia, perceived by some subjects having implanted intraocular lenses (IOLs) are presented. In one aspect, an IOL can include an optic and one or more fixation members for facilitating placement of the IOL. The fixation member can be adapted to have a portion that redirects light that is incident thereon in a manner which alleviates or prevents dysphotopsia. For example, the light that is incident on a fixation member can be directed to a retinal location intermediate to where imaging typically occurs on the retina and where a secondary image is formed. Various techniques for achieving these improvements are discussed, both in terms of the structures of improved IOLs, and methods for alleviating dysphotopsia.
Abstract:
The present invention provides monofocal ophthalmic lenses that exhibit extended depth of field while providing sufficient contrast for resolution of an image over a selected range of defocus distances. In some embodiments, a lens of the invention can include a refractive surface having controlled surface modulations relative to a base profile. The surface modulations are designed to extend a depth of field of the lens such that a single image can be resolved, albeit with somewhat less contrast, over a range of distances greater than the focal region of a conventional lens. The ophthalmic lenses of the invention can be employed in various vision correction applications, including, but not limited to, intraocular lenses, contact lenses, instrastromal implants and other refractive devices.
Abstract:
A method of designing an intraocular lens (IOL) of a selected power includes determining a power-specific axial separation parameter for the selected power. The method also includes selecting at least one aberration correction for the IOL. The method further includes designing the IOL based on the power-specific axial separation parameter to produce the selected aberration correction.