摘要:
An object of the invention is to provide an organic EL display device manufacturing method that allows the reliability of the organic EL display device having undergone a defect repair process to be improved. A method for manufacturing an organic EL display device, the method including an organic EL element substrate formation step of forming at least one organic EL element on an organic EL element substrate, the organic EL element including an organic EL film, an anode electrode and a reflection electrode that form a first conductive film provided below the organic EL film, and a cathode electrode that forms a second conductive film provided above the organic EL film, a resin sealing step of providing a thermoplastic sealing resin to cover the upper side of the organic EL element, a defect detection step of detecting a defect in the organic EL element, and a defect elimination step of eliminating the defect detected in the defect detection step by irradiating the defect with a laser beam.
摘要:
A mother element substrate and a mother seal substrate are adhered with each other via an adhesive sheet. An adhesive sheet cut portion of the adhesive sheet corresponding to a terminal portion is formed at a time when the adhesive sheet is applied to the mother seal substrate, thus requiring no processing of the terminal portion afterward. Since the adhesive sheet cut portion extends to reach an edge of the adhesive sheet to prevent deformation of the adhesive sheet around the terminal portion after adhering the mother element substrate and the mother seal substrate with each other under the negative pressure so as to be returned to the atmosphere, thus realizing the solid seal type organic EL display device with high reliability.
摘要:
An organic electroluminescence device which can prevent the deterioration thereof attributed to moisture by preventing a desiccant from influencing organic electroluminescence elements is provided. The organic electroluminescence device includes: first and second substrates which are arranged to face each other in an opposed manner with a gap therebetween; organic electroluminescence elements which are formed on a first surface of the first substrate which faces the second substrate in an opposed manner; a desiccant which is formed on a second surface of the second substrate which faces the first substrate in an opposed manner; and a resin which is adhered to the first and second surfaces and covers the desiccant and the organic electroluminescence elements. The desiccant includes a portion which is arranged outside a region of the second surface which faces the organic electroluminescence elements in an opposed manner and surrounds the whole of the region, and the organic electroluminescence elements are isolated from the desiccant by way of the resin.
摘要:
There is disclosed a construction which facilitates preventing of organic electroluminescence films from being broken by contact between desiccant members and the organic electroluminescence films which are provided inside an organic electroluminescence display device. Organic electroluminescence films are formed on a substrate. An interior of an organic electroluminescence display device is sealed by a rear glass plate which is sealingly bonded to the substrate. The rear glass plate has recess portions in which desiccant members are mounted by double-side adhesive tapes. Thick portions are provided between respective adjacent recess portions of the rear glass plate, whereby the rear glass plate is prevented from being made to flex, and contact between the desiccant members and the organic electroluminescence films formed on the substrate is prevented.
摘要:
A manufacturing method of an organic EL display device which can suppress a manufacturing cost while effectively preventing organic EL layers from being influenced by moisture is provided. An organic EL element is covered with a resin sheet. The resin sheet is adhered to a sealing substrate and an element substrate on which organic EL elements are formed by lamination. Laser beams are radiated to a terminal portion formed on the element substrate so as to generate impact waves in the terminal portion by laser beams thus removing the resin sheet from the terminal portion. Thereafter, edge portions of the sealing substrate and edge portions of the resin sheet are removed along a line a. Due to such steps, it is possible to manufacture highly reliable organic EL display devices at a low cost.
摘要:
An object of the present invention is to provide a catalyst composition containing a perovskite-type composite oxide which exhibits a satisfactory catalytic performance over a long time even in a high temperature atmosphere and has a stable quality in which Rh and/or Pt dissolves to form a solid solution at a high rate.To achieve the object described above, in the present invention the catalyst composition is prepared to comprise an Rh-containing perovskite-type composite oxide represented by the following general formula (I) and/or a Pt-containing perovskite-type composite oxide represented by the following general formula (II) and a thermostable oxide optionally containing a noble metal. A1xA2wB11−(y+z)B2yRhzO3±δ (I) A3rA4sB31−(t+u)B4tPtuO3±δ′ (II)
摘要:
Inside surround desiccant pattern A surrounding an organic EL element by bonding an element substrate to a sealing board, outside surround desiccant pattern C surrounding the inside surround desiccant pattern A, and internal desiccant pattern (having a thinner film thickness than the inside surround desiccant pattern A) surrounded by the inside surround desiccant pattern A are formed on the sealing board by one time screen printing. For this purpose, a screen mask is utilized on which opening patterns for the inside and outside surround desiccant patterns A, C and an opening pattern having a narrower opening width than the opening patterns for A and C for forming an internal desiccant pattern are formed. With this configuration, it has been achieved to manufacture a highly reliable organic EL display apparatus in more simplified process.
摘要:
An organic EL element section (1000) is formed on a circuit formation section (102) formed on a circuit board (101). The organic EL element section (1000) is covered with a protective layer (113) including an SiNxOy film. The SiNxOy film has infrared absorption characteristics including: an Si—O—Si stretching vibration absorption peak appearing at energy lower than 1,000 cm−1; an absorption intensity of an Si—N stretching vibration absorption peak appearing in the vicinity of around 870 cm−1 which is 0.75 or more times an absorption intensity of the Si—O—Si stretching vibration absorption peak; and an absorption peak intensity in a range of 2,000 to 4,000 cm−1, which is 5% or less of the absorption intensity of the Si—N stretching vibration absorption peak. Thus, the protective film having an excellent moisture-blocking property may be obtained, and life property of an organic EL display device may be improved.
摘要翻译:有机EL元件部(1000)形成在电路基板(101)上形成的电路形成部(102)上。 有机EL元件部分(1000)被包括SiN x O y膜的保护层(113)覆盖。 SiN x O y膜具有红外吸收特性,包括:以低于1000cm -1的能量出现的Si-O-Si伸缩振动吸收峰; 在约870cm -1附近出现的Si-N伸缩振动吸收峰的吸收强度是Si-O-Si伸缩振动吸收峰的吸收强度的0.75倍以上; 以及在2,000〜4000cm -1的范围内的吸收峰强度,其为Si-N伸缩振动吸收峰的吸收强度的5%以下。 因此,可以获得具有优异的防湿性的保护膜,并且可以提高有机EL显示装置的寿命。
摘要:
An organic EL display panel which does not impair a sealing effect and ensures a smooth edge portion when individual organic EL display panels are separated from a mother panel on which a plurality of organic EL display panels are formed is provided. A mother panel is formed by adhering a mother element substrate and a mother sealing substrate by way of an adhesive material sheet. In separating the mother panel into individual organic EL display panels, laser beams are radiated to the mother panel along separation lines so as to lower an adhesive strength of the adhesive material sheet at such portions. Thereafter, scribing is applied to the mother panel along the separation lines. Due to such a constitution, it is possible to realize an organic EL display panel without lowering a sealing effect and ensuring smooth appearance.
摘要:
A seat adjuster assembly includes an electric motor having an output shaft with a worm gear positioned in a gearbox, a spur gear meshing with the worm gear in the gearbox, a spindle shaft fixed to and driven by the spur gear coacting with a nut contained in a tube, and a linkage system connected to both a vertically movable upper vehicle seat part and a non-vertically movable lower vehicle seat part that positions vertically the upper vehicle seat part responsive to the position of the nut relative to the spindle shaft. At least one washer is provided on the spindle shaft. The spur gear is a plastic spur gear molded over the washer. A pair of leaf springs disposed in the gearbox bears against the spur gear and a wall of the gearbox.