Abstract:
Virtualization software that includes a VDRB (virtual distributed router/bridge) module for performing L3 routing and/or bridging operations is provided. At least some of the VDRBs are configured as VDBs (virtual distributed bridge) for performing bridging operations between different network segments in a distributed manner. The bridging tasks of a network are partitioned among several VDBs of the network based on MAC addresses. MAC addresses of VMs or other types of network nodes belonging to an overlay logical network are partitioned into several shards, each shard of MAC addresses assigned to a VDB in the network. Each VDB assigned a shard of MAC addresses performs bridging when it receives a packet bearing a MAC address belonging to its assigned shard. A VDB does not perform bridging on packets that do not have MAC address that falls within the VDB's shard of MAC addresses.
Abstract:
A system and method for managing a trusted connection within a public cloud comprises transmitting a first token and a second token from a cloud service manager to a public cloud controller, initializing a public cloud manager in response to receipt of the first token and the second token, and generate a cloud certificate, and transmitting the cloud certificate and the second token from the public cloud manager to a management plane. The method further comprises establishing a trusted connection between the public cloud controller and the management plane in response to receipt of the cloud certificate and the second token by the management plane.
Abstract:
Virtualization software that includes a VDRB (virtual distributed router/bridge) module for performing L3 routing and/or bridging operations is provided. At least some of the VDRBs are configured as VDBs (virtual distributed bridge) for performing bridging operations between different network segments in a distributed manner. The bridging tasks of a network are partitioned among several VDBs of the network based on MAC addresses. MAC addresses of VMs or other types of network nodes belonging to an overlay logical network are partitioned into several shards, each shard of MAC addresses assigned to a VDB in the network. Each VDB assigned a shard of MAC addresses performs bridging when it receives a packet bearing a MAC address belonging to its assigned shard. A VDB does not perform bridging on packets that do not have MAC address that falls within the VDB's shard of MAC addresses.
Abstract:
A LRE (logical routing element) that have LIFs that are active in all host machines spanned by the LRE as well as LIFs that are active in only a subset of those spanned host machines is provided. A host machine having an active LIF for a particular L2 segment would perform the L3 routing operations for network traffic related to that L2 segment. A host machine having an inactive LIF for the particular L2 segment would not perform L3 routing operations for the network traffic of the L2 segment.
Abstract:
A logical routing element (LRE) having multiple designated instances for routing packets from physical hosts (PH) to a logical network is provided. A PH in a network segment with multiple designated instances can choose among the multiple designated instances for sending network traffic to other network nodes in the logical network according to a load balancing algorithm. Each logical interface (LIF) of an LRE is defined to be addressable by multiple identifiers or addresses, and each LIF identifier or address is assigned to a different designated instance.
Abstract:
Some embodiments provide a method of operating several logical networks over a network virtualization infrastructure. The method defines a managed physical switching element (MPSE) that includes several ports for forwarding packets to and from a plurality of virtual machines. Each port is associated with a unique media access control (MAC) address. The method defines several managed physical routing elements (MPREs) for the several different logical networks. Each MPRE is for receiving data packets from a same port of the MPSE. Each MPRE is defined for a different logical network and for routing data packets between different segments of the logical network. The method provides the defined MPSE and the defined plurality of MPREs to a plurality of host machines as configuration data.
Abstract:
Some embodiments provide a method of operating several logical networks over a network virtualization infrastructure. The method defines a managed physical switching element (MPSE) that includes several ports for forwarding packets to and from a plurality of virtual machines. Each port is associated with a unique media access control (MAC) address. The method defines several managed physical routing elements (MPREs) for the several different logical networks. Each MPRE is for receiving data packets from a same port of the MPSE. Each MPRE is defined for a different logical network and for routing data packets between different segments of the logical network. The method provides the defined MPSE and the defined plurality of MPREs to a plurality of host machines as configuration data.
Abstract:
A system for network virtualization in which physical network resources in different physical contexts are configured to implement one or more distributed logical network elements, at least some of the physical network resources implementing the distributed logical network elements configured according the physical context of those network resources. The local configuration of a physical locale is a version of the logical configuration that is modified specifically for the physical locale. Such modification is based on locale identifiers that are assigned to the physical locales. Some systems use locale-specific information to modify next-hop preference. Some system use locally modified configurations to determine the placement of VMs.
Abstract:
A logical routing element (LRE) having multiple designated instances for routing packets from physical hosts (PH) to a logical network is provided. A PH in a network segment with multiple designated instances can choose among the multiple designated instances for sending network traffic to other network nodes in the logical network according to a load balancing algorithm. Each logical interface (LIF) of an LRE is defined to be addressable by multiple identifiers or addresses, and each LIF identifier or address is assigned to a different designated instance.
Abstract:
A LRE (logical routing element) that have LIFs that are active in all host machines spanned by the LRE as well as LIFs that are active in only a subset of those spanned host machines is provided. A host machine having an active LIF for a particular L2 segment would perform the L3 routing operations for network traffic related to that L2 segment. A host machine having an inactive LIF for the particular L2 segment would not perform L3 routing operations for the network traffic of the L2 segment.