摘要:
The present invention relates to a wafer formed with an evaluation element and capable of improving productivity and a manufacturing method of an electronic component using the same. In a wafer according to the present invention, a plurality of elements connected to electrode films through lead-out conductive films are arranged and a chip area is defined for cutting out the plurality of elements in a given number. In the wafer, at least one evaluation element is formed in an area outside the chip area. The lead-out conductive films extend to the outside area and are connected to the evaluation elements. With this wafer, since the lead-out conductor is shared between the element and the evaluation element, the electrode film connected therewith can be shared, too. Accordingly, evaluation can be performed by using the evaluation element without the need of providing the wafer with a lead-out conductor and an electrode film exclusively for the evaluation element, so that the chip area to be cut out from the wafer can be made larger than before.
摘要:
A parasitic capacity C4 generated between a slider substrate and the first shield layer with the first insulating layer as a capacity layer is made substantially equal to a parasitic capacity C2 occurring between a lower magnetic layer and the second shield layer with the third insulating layer as a capacity layer. Preferably, a connection is made between the lower magnetic layer and the slider substrate by a resistance of preferably 100 (Ω) or lower. Thus, it is possible to provide a thin-film magnetic head that can hold back deterioration in a reproducing device and the occurrence of errors due to crosstalk between a recording device and the reproducing device and extraneous noises.
摘要:
In a thin film magnetic head of the present invention, lead formation patterns of a first lead for connection between a lower shield layer and a first extraction electrode portion and a second lead for connection between an upper shield layer and a second extraction electrode portion are each formed so as not to have an overlapping portion with a heatsink layer but to bypass the heatsink layer when observing from the upper shield layer side toward the lower shield layer in a transparent state in plan view. Therefore, it is possible to increase an effect of heat radiation to the substrate side on the basis of the presence of the heatsink layer to thereby limit propagation of heat to a magnetoresistive effect layer as much as possible and further to achieve a drastic improvement in recording and reproducing characteristics at high recording frequencies, i.e. frequency characteristics (f characteristics) in a high frequency region.
摘要:
Provided is a thin-film magnetic head for reading data from a magnetic recording medium and/or writing data to a magnetic recording medium, in which the magnetic spacing can be controlled appropriately by stably adjusting the pressure working between the thin-film magnetic head and the magnetic recording medium according to the change of conditions such as the change over time. This thin-film magnetic head comprises at least one through hole reaching a surface opposed to the magnetic recording medium of the thin-film magnetic head, for adjusting a pressure working between the thin-film magnetic head and the magnetic recording medium. Preferably, the head further comprises at least one flow-amount control means for controlling the flow amount of gas that flows via the at least one through hole.
摘要:
Provided is a multichannel thin-film magnetic head having a plurality of read head elements neighboring with each other, each of which includes shield layers having a desired stable magnetic-domain structure. The head comprises at least one read head part comprising a plurality of read head elements aligned in the track width direction, wherein each of the plurality of read head elements comprises a lower shield layer and an upper shield layer, and the at least one read head part comprises: a lower shield part comprising a plurality of the lower shield layers aligned in the track width direction; and an upper shield part comprising a plurality of the upper shield layers aligned in the track width direction, and wherein dummy shield layers are provided respectively on both sides of at least the lower shield part.
摘要:
A method of measuring magnetization direction of a MR device, includes a first step of obtaining both maximum electrical resistance values under positive and negative applied measurement magnetic fields onto the MR device biased by anti-ferromagnetic material, a second step of relatively rotating a basic axis of the MR device against a direction of the applied measurement magnetic field until both the maximum resistance values become comparatively the same, and a third step of obtaining a relative rotation angle between the basic axis of the MR device and the direction of the applied measurement magnetic field.
摘要:
Provided is a thin-film magnetic head in which the magnetic spacing can be appropriately controlled by dynamically and accordingly, by adjusting the pressure working between the thin-film magnetic head and the magnetic recording medium according to the change of conditions such as the change over time. The thin-film magnetic head comprises at least one cavity for adjusting a pressure working between the thin-film magnetic head and the magnetic recording medium, provided in a surface of the head opposed to the magnetic recording medium, and a volume of the at least one cavity being variable. When the magnetic recording medium passes through near the cavity, the cavity generates a (negative) pressure that attracts the head and the medium toward each other. The amount of the negative pressure depends on the volume of the cavity; thus, a magnetic spacing dMS can be controlled dynamically and accordingly by adjusting the volume.
摘要:
A multi-channel thin-film magnetic head includes a substrate, a plurality of MR read head elements, a plurality of first resistive elements, and a second resistive element. Each MR read head element includes a lower magnetic shield layer, an upper magnetic shield layer, and an MR layer arranged between the lower magnetic shield layer and the upper magnetic shield layer. Each first resistive element has a first resistance value. One ends of the first resistive elements are connected to the lower magnetic shield layers or the upper magnetic shield layers of the MR read head elements, respectively. The second resistive element has a second resistance value that is higher than the first resistance value. One end of the second resistive element is commonly connected to the other ends of the plurality of first resistive elements. The other end of the second resistive element is grounded.
摘要:
Provided is a thin-film magnetic head, in which the magnetic spacing can be controlled appropriately, regardless of the presence of the variation in height of the medium-opposed surface of the closure. The thin-film magnetic head includes: at least one head element formed on or above an element-formation surface of a substrate, for reading data from a magnetic recording medium and/or writing data to a magnetic recording medium; an overcoat layer formed on the element-formation surface so as to cover the at least one head element; and at least one closure adhered to at least a portion of an upper surface of the overcoat layer. Here, at least one of the at least one closure includes at least one element for adjusting the height of a medium-opposed surface of the closure. The element is preferably a heating element provided within the closure.
摘要:
A magnetic tape head has a base substrate, a magnetic head layer formed on the base substrate, and a closure piece formed on the magnetic head layer. The distance from a first plane comprising a point on the tape bearing surface of the base substrate to a third plane comprising a point on the tape bearing surface of the closure piece is equal to or greater than the distance from the first plane to a second plane comprising a point on the tape bearing surface of the magnetic head layer.