Abstract:
In various aspects, an optoelectronic device is provided. The device may include a first substrate having a first non-planar shape, wherein the first substrate comprises a first shape memory material, a second substrate having a second non-planar shape, wherein the second substrate comprises a second shape memory material, and at least one optoelectronic component, arranged between the first substrate and the second substrate, wherein the first substrate is arranged in a coplanar or substantially coplanar manner with respect to the second substrate.
Abstract:
The invention relates to an optoelectronic component, the optoelectronic component comprises a light-emitting layer stack, and an electrothermal protection element, which is connected to the layer stack in the component and has a temperature-dependent resistor.
Abstract:
According to the present disclosure, an organic light-emitting diode device is disclosed with an organic light-emitting diode having a first main surface and a second main surface lying opposite the first main surface, an optically functional device having a first hollow space and a second hollow space, and a control element. The first hollow space is arranged on or over the first main surface, and the second hollow space is arranged below the second main surface. The first hollow space and the second hollow space are connected to one another by means of a fluid connection. An optically functional fluid is arranged in the optically functional device. The control element is configured to move the optically functional fluid to and fro between the first hollow space and the second hollow space.
Abstract:
In various embodiments, an optoelectronic component is provided. The optoelectronic component includes an optically active layer structure on a surface of a planar substrate. The surface in a predefined region is free of optically active layer structure. The optoelectronic component further includes an encapsulation structure having an inorganic encapsulation layer. The inorganic encapsulation layer is formed on or above the optically active layer structure and the surface of the substrate in the predefined region. The inorganic encapsulation layer at least in the predefined region is formed in direct contact with the surface of the substrate. The surface of the substrate at least in the predefined region includes a structuring. The structuring is configured to increase the roughness of the surface. The substrate at least in the predefined region at the surface thereof includes or is formed from an inorganic material.
Abstract:
In various embodiments, a method for producing an optoelectronic device is provided. The method may include in the following order: providing a substrate, having a first state having a non-planar shape, reshaping the substrate into a second state. The second state has a planar or substantially planar shape. The method may further include forming at least one optoelectronic component on the substrate and reshaping the substrate into a third state. The third state is identical or substantially identical to the first state.
Abstract:
According to the present disclosure, a method for producing an optoelectronic component is provided. The method includes forming an optically functional layer structure in accordance with at least one part of a geometric network of a body, and bending the part of the geometric network in the at least one desired bending region, such that at least one part of the body is formed. The part of the geometric network includes at least one desired bending region.
Abstract:
In various embodiments, an optoelectronic assembly may include at least one organic light emitting diode including a first light emitting diode element and a second light emitting diode element, and an electronic circuit. The first light emitting diode element and the second light emitting diode element are electrically connected in parallel and are deposited monolithically on a common substrate, and the electronic circuit is designed to compare an electric current through the first light emitting diode element that flows during operation with an electric current through the second light emitting diode element that flows during operation and, depending on the comparison, to detect a short circuit of the first light emitting diode element or of the second light emitting diode element and to initiate an electrical switching off of one of the light emitting diode elements and/or of the assembly.
Abstract:
Various embodiments may relate to a component. The component includes an optically active region designed for electrically controllably transmitting, reflecting, absorbing, emitting and/or converting an electromagnetic radiation, and an optically inactive region formed alongside the optically active region, wherein the optically inactive region and/or the optically active region have/has an adaptation structure designed to adapt the value of an optical variable in the optically inactive region to a value of the optical variable in the optically active region.
Abstract:
An organic light-emitting device includes a substrate, on which a transparent electrode and a further electrode are applied. An organic light-emitting layer is arranged between the electrodes. At least one optical scattering layer is arranged on a side of the transparent electrode facing away from the organic light-emitting layer.
Abstract:
An optoelectronic component is provided. The optoelectronic component includes an electromagnetic radiation source including an optically active region designed for emitting a first electromagnetic radiation, and a converter structure, which includes at least one converter material and is arranged in the beam path of the first electromagnetic radiation. The at least one converter material is designed to convert at least one portion of the first electromagnetic radiation into at least one second electromagnetic radiation. The at least one second electromagnetic radiation has at least one different wavelength than the at least one portion of the first electromagnetic radiation. The converter structure is formed in a structured fashion in such a way that the converter structure has a predefined region, such that the at least one second electromagnetic radiation is emittable only from the predefined region. The predefined region has a smaller area than the optically active region.