Abstract:
An optoelectronic component may include a carrier, above which a first electrode is formed. An optically functional layer structure is formed above the first electrode. A second electrode is formed above the optically functional layer structure, the second electrode extending areally over at least one part of the side of the optically functional layer structure which faces away from the carrier. An encapsulation is formed above the first and/or second electrode, the encapsulation encapsulating the optically functional layer structure. An electrically conductive contact structure is arranged in a cutout of the encapsulation on the first and/or second electrode and extends through the encapsulation, for electrically contacting the first and/or second electrode. The contact structure and the encapsulation are formed such that in interaction they encapsulate the first and/or second electrode.
Abstract:
An optoelectronic component and a method to operate the optoelectronic component are disclosed. In an embodiment the optoelectronic component includes an organic light-emitting diode configured to emit radiation through a main emission surface and a liquid crystal element configured to adjust a color location of the radiation, wherein the liquid crystal element is switchable into a first state and into a second state, wherein the liquid crystal element in the first state is suitable for selectively reflecting light of a first wavelength range and in the second state is transparent, and wherein the liquid crystal element is arranged on a rear side of the organic light-emitting diode facing the main emission surface so that light of the first wavelength range that is emitted towards the rear side is at least partially reflected in a direction of the main emission surface in the first state of the liquid crystal element.
Abstract:
An optoelectronic component is provided with a carrier; a zinc oxide layer arranged on the carrier and having the first and second regions, wherein the first region is a first electrode structure which is doped with aluminum so that the first region is transparent and electrically conductive; an organic optically functional layer structure arranged at least partially over the first electrode structure; and a second electrode structure arranged at least partially over the organic optically functional layer structure. The first and second electrode structures electrically contact the organic optically functional layer structure. The zinc oxide layer has a lower doping in the second region than the first electrode structure. The zinc oxide layer is configured in the second region as a varistor layer structure, which is arranged between the first and second electrode structures and contacts the two electrode structures. The varistor layer structure adjoins the optically transparent first region.
Abstract:
An optoelectronic assembly including an optically active region configured for emitting and/or absorbing light, and an optically inactive region configured for component-external contacting of the optically active region is provided. The optically inactive region includes a dielectric structure and a first electrode on or above a substrate, an organic functional layer structure on the first electrode in physical contact with the first electrode and the dielectric structure, and a second electrode in physical contact with the organic functional layer structure and above the dielectric structure, wherein the organic functional layer structure at least partly overlaps the dielectric structure in such a way that the part of the second electrode above the dielectric structure is free of a physical contact of the second electrode with the dielectric structure.
Abstract:
An optoelectronic component and a method to operate the optoelectronic component are disclosed. In an embodiment the optoelectronic component includes an organic light-emitting diode configured to emit radiation through a main emission surface and a liquid crystal element configured to adjust a colour location of the radiation, wherein the liquid crystal element is switchable into a first state and into a second state, wherein the liquid crystal element in the first state is suitable for selectively reflecting light of a first wavelength range and in the second state is transparent, and wherein the liquid crystal element is arranged on a rear side of the organic light-emitting diode facing the main emission surface so that light of the first wavelength range that is emitted towards the rear side is at least partially reflected in a direction of the main emission surface in the first state of the liquid crystal element.
Abstract:
An optoelectronic component may include a carrier, an organic functional layer structure, which is embodied on or above a carrier and is designed for taking up and/or providing electromagnetic radiation, an antireflection/getter layer structure arranged in the beam path of the organic functional layer structure and including getter material having a lower mean refractive index than the mean refractive index of the organic functional layer structure, and an antireflection layer, wherein material of the antireflection layer is arranged in the beam path of the organic functional layer structure at least partly between the organic functional layer structure and the getter material, and wherein the material of the antireflection layer arranged between the organic functional layer structure and the getter material has a mean refractive index which is greater than the refractive index of the getter material and/or comprises at least one scattering additive material distributed in a matrix.
Abstract:
An organic optoelectronic component may include at least one contact pad with a first electrical contact region and a second electrical contact region. The first electrical contact region and the second electrical contact region are electrically connected to the contact pad. The second electrical contact region is designed in such a way that it has a higher adhesion than the first electrical contact region in respect of a cohesive connection means with the contact pad. The contact pad is designed in such a way that the first electrical contact region is free of cohesive connection means.
Abstract:
An apparatus may include a first support covered with at least one ALD precursor and/or at least one MLD precursor, and a second support covered with at least one ALD precursor and/or at least one MLD precursor which is/are complementary to the ALD precursor and/or MLD precursor of the first support. The first support is at least partly joined to the second support by an atomic bond between the ALD precursor of the first support and the ALD precursor of the second support or between the MLD precursor of the first support and the MLD precursor of the second support in such a way that an ALD layer or an MLD layer is formed.