Abstract:
A regenerative elevator drive device, a method for buffering energy of a regenerative elevator drive device, and an elevator system are disclosed. The regenerative elevator drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The regenerative drive may further include a direct current (DC) link bridging the inverter and the converter, the DC link including a first capacitor bridging the inverter and the converter and a second capacitor in parallel with the first capacitor. The regenerative elevator drive device may be a multi-level regenerative drive device.
Abstract:
An elevator system includes a battery; a machine having a motor for imparting motion to an elevator car; an inverter for converting DC power from the battery to AC power for the machine in motoring mode and converting AC power from the machine to DC power for the battery in regenerative mode; and a controller to control the inverter, the controller implementing at least one of: detecting an overload at the battery in motoring mode and reducing car speed in response to the overload; detecting an overcharge at the battery in regenerative mode and reducing car speed in response to the overcharge; detecting motor direct current in a motor field weakening mode and reducing car speed in response to the motor direct current; and detecting car load and adjusting car speed in response to car load.
Abstract:
A three-level converter includes a first converter leg having first switches connected across a positive DC node and a negative DC node, a second converter leg having second switches connected across the positive DC node and the negative DC node, and a third converter leg having third switches connected across the positive DC node the negative DC node. The converter includes a battery connected between the positive DC node and the negative DC node, and center-connected to a ground node having a ground potential. Each of the first, second, and third converter legs is connected to the ground node.
Abstract:
A regenerative drive device and a method for configuring the DC link of a regenerative drive device are disclosed. The multilevel regenerative drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The multilevel regenerative drive device may also include a direct current (DC) link bridging the inverter and the converter, the DC link including a capacitor, an inverter neutral point, and a converter neutral point independent of the inverter neutral point. Alternatively, the inverter neutral point and the converter neutral point may be connected.
Abstract:
Embodiments are directed to calculating a current associated with a motor of an elevator based on an output of a speed regulator, and controlling the elevator based on the current. Embodiments are directed to examining a feeder current obtained via a converter current sensor of a regenerative drive during a peak power condition, and regulating a speed of an elevator based on the feeder current.
Abstract:
A power management system comprises an AC-power-source controller configured to control power supply between the AC power source and a common DC bus, the AC-power-source controller further configured to limit AC power supplied from the AC power source to the common DC bus to a first AC-power-source power limit; a power inverter configured to invert the DC power on the common DC bus into AC output power for driving the electric motor; a DC power source configured to supply DC power to the common DC bus; and a DC-power-source controller configured to control power supply between the DC power source and the common DC bus, the DC-power-source controller further configured to start supplying DC power from the DC power source to the common DC bus in response to a detection of a voltage drop on the common DC bus from a AC-power-source reference voltage to a DC-power-source reference voltage.
Abstract:
A regenerative drive (30) and method for providing power from such to at least one auxiliary power supply (41, 43) is disclosed. The drive may include a converter (32) and an inverter (34) connected by a DC bus (33), and a controller (54) configured to apply at least one of unipolar modulation and bipolar modulation to the converter (32) and the inverter (34), and to provide about half of the output voltage across the upper portion (130) of the DC bus (33) and about half of the output voltage across the lower portion (136) of the DC bus (33), when the upper and lower portions (130, 136) of the DC bus (33) are unevenly loaded. A first auxiliary power supply (41) may be connected to one of the upper and lower portions (130, 136) of the DC bus (33) and may receive power from the multilevel regenerative drive (30).
Abstract:
An illustrative example method of maintaining an elevator drive includes determining whether a humidity condition near the elevator drive is outside a desired range. When the humidity condition is outside the desired range and the elevator drive is idle, reactive power is provided to at least one component of the elevator drive to increase a temperature of the at least one component without using the elevator drive to operate an associated elevator system.
Abstract:
An elevator load weighing system (100) includes a brake assembly (104) configured to apply a braking force that inhibits vertical movement of an elevator car (106), and rotate in response to realizing a torque applied thereto. A position monitoring mechanism (112) is coupled to the brake assembly (104) and is configured to output a position signal in response to a rotation of the brake assembly (104). An electronic elevator control module (102) is configured to determine a zero-torque position of the brake assembly (104) prior to engaging the brake assembly (104). The electronic elevator control module (102) is further configured to detect at least one rotational brake displacement of the brake assembly (104) based on the position signal.
Abstract:
The subject-matter disclosed relates to a power control system (10) for a battery driven elevator; the power control system (10) comprising a DC battery (16) for providing electrical power to an electric motor (24) of the elevator system; and a power controller (22) including a power converter (26), an power inverter (28), and a DC intermediate circuit (30) connected in between the power converter (26) and the power inverter (28); wherein an output of the DC battery (16) is connected to the DC intermediate circuit (30).