Abstract:
A regenerative drive (30) and method for providing power from such to at least one auxiliary power supply (41, 43) is disclosed. The drive may include a converter (32) and an inverter (34) connected by a DC bus (33), and a controller (54) configured to apply at least one of unipolar modulation and bipolar modulation to the converter (32) and the inverter (34), and to provide about half of the output voltage across the upper portion (130) of the DC bus (33) and about half of the output voltage across the lower portion (136) of the DC bus (33), when the upper and lower portions (130, 136) of the DC bus (33) are unevenly loaded. A first auxiliary power supply (41) may be connected to one of the upper and lower portions (130, 136) of the DC bus (33) and may receive power from the multilevel regenerative drive (30).
Abstract:
A regenerative elevator drive device, a method for buffering energy of a regenerative elevator drive device, and an elevator system are disclosed. The regenerative elevator drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The regenerative drive may further include a direct current (DC) link bridging the inverter and the converter, the DC link including a first capacitor bridging the inverter and the converter and a second capacitor in parallel with the first capacitor. The regenerative elevator drive device may be a multi-level regenerative drive device.
Abstract:
A regenerative elevator drive device, a method for buffering energy of a regenerative elevator drive device, and an elevator system are disclosed. The regenerative elevator drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The regenerative drive may further include a direct current (DC) link bridging the inverter and the converter, the DC link including a first capacitor bridging the inverter and the converter and a second capacitor in parallel with the first capacitor. The regenerative elevator drive device may be a multi-level regenerative drive device.
Abstract:
A three-level converter includes a first converter leg having first switches connected across a positive DC node and a negative DC node, a second converter leg having second switches connected across the positive DC node and the negative DC node, and a third converter leg having third switches connected across the positive DC node the negative DC node. The converter includes a battery connected between the positive DC node and the negative DC node, and center-connected to a ground node having a ground potential. Each of the first, second, and third converter legs is connected to the ground node.
Abstract:
A regenerative drive device and a method for configuring the DC link of a regenerative drive device are disclosed. The multilevel regenerative drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The multilevel regenerative drive device may also include a direct current (DC) link bridging the inverter and the converter, the DC link including a capacitor, an inverter neutral point, and a converter neutral point independent of the inverter neutral point. Alternatively, the inverter neutral point and the converter neutral point may be connected.
Abstract:
A regenerative drive device and a method for configuring the DC link of a regenerative drive device are disclosed. The multilevel regenerative drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The multilevel regenerative drive device may also include a direct current (DC) link bridging the inverter and the converter, the DC link including a capacitor, an inverter neutral point, and a converter neutral point independent of the inverter neutral point. Alternatively, the inverter neutral point and the converter neutral point may be connected.
Abstract:
A braking system for an elevator includes an electromagnetic brake operably connected to an elevator car, and a control circuit operably connected to the electromagnetic brake. The control circuit includes a switching mechanism configured to selectively modify a rate of engagement of the electromagnetic brake to selectively modify a rate of deceleration of the elevator car. The switching mechanism has a first position, a second position and a third position, to selectively modify the rate of engagement.
Abstract:
A braking system for an elevator includes an electromagnetic brake operably connected to an elevator car, and a control circuit operably connected to the electromagnetic brake. The control circuit includes a switching mechanism configured to selectively modify a rate of engagement of the electromagnetic brake to selectively modify a rate of deceleration of the elevator car. The switching mechanism has a first position, a second position and a third position, to selectively modify the rate of engagement.
Abstract:
A regenerative drive (30) and method for providing power from such to at least one auxiliary power supply (41, 43) is disclosed. The drive may include a converter (32) and an inverter (34) connected by a DC bus (33), and a controller (54) configured to apply at least one of unipolar modulation and bipolar modulation to the converter (32) and the inverter (34), and to provide about half of the output voltage across the upper portion (130) of the DC bus (33) and about half of the output voltage across the lower portion (136) of the DC bus (33), when the upper and lower portions (130, 136) of the DC bus (33) are unevenly loaded. A first auxiliary power supply (41) may be connected to one of the upper and lower portions (130, 136) of the DC bus (33) and may receive power from the multilevel regenerative drive (30).