Abstract:
A communication connector comprising plug interface contacts having a plurality of conductor pairs, and corresponding cable connector contacts. A printed circuit board connects the plug interface contacts to respective cable connector contacts. The printed circuit board includes circuitry between a first conductor pair and a second conductor pair. The circuitry has a first mutually inductive coupling between a first conductor of the first conductor pair and a first conductor of the second conductor pair, a first capacitive coupling between the first conductor of the first conductor pair and the first conductor of the second conductor pair. The first capacitive coupling is approximately concurrent with the first mutually inductive coupling. A shunt capacitive coupling connects the first conductor of the second conductor pair to a second conductor of the second conductor pair.
Abstract:
A communication jack which includes a housing with an aperture for receiving a communication plug, and a circuit board at least partially within the housing. The circuit board includes crosstalk compensation elements. A plurality of plug interface contacts are connected to the circuit board. At least one of the plurality of plug interface contacts includes a contact element layered with at least one spring element.
Abstract:
An RJ45 communication jack has a housing with a top, bottom, front, and back. A foil is immediately adhered to and partially covers the housing. A top or bottom of the housing is covered by a first portion and a second portion of the foil wherein the first portion and the second portion are separated by a nonconductive gap. The gap extends from the front of the housing to the rear of the housing.
Abstract:
This application describes a jack for improving crosstalk attenuation. The jack has a housing, a foil at least partially surrounding the housing, a printed circuit board, and at least one pair of insulation displacement contacts and vias. Each pair of insulation contacts and vias are associated with a differential signal. A conductive trace stub is routed on the printed circuit board near the edge of the board proximate to the foil in order to at least partially balance the coupling from one of the insulation displacement contacts and vias of a pair to the foil with the other insulation displacement contact and via of the pair by electrically connecting the trace stub to the via that is further from the foil.
Abstract:
An RJ45 Communication jack has a housing with a top, bottom, front, and back. A foil is immediately adhered to and partially covers the housing. A top or bottom of the housing is covered by a first portion and a second portion of the foil wherein the first portion and the second portion are separated by a nonconductive gap. The gap extends from the front of the housing to the rear of the housing. With such foils placed on each one of a series of adjacent jack housing, common mode noise caused by capacitive coupling between adjacent ones of the foils is reduced.
Abstract:
Embodiments of the present invention generally relate to the field of electronic communication, and more particularly, to techniques used to compensate for/reduce/or otherwise manipulate crosstalk in communication connectors, and apparatuses and methods which employ such techniques. In an embodiment, the present invention is a communication connector that includes a plurality of signal pairs including at least a first pair and a second pair, a first compensation stage between the first pair and the second pair, and an orthogonal compensation network between the first pair and the second pair. The orthogonal compensation network can be time delayed from the first compensation stage.
Abstract:
An RJ45 Communication jack has a housing with a top, bottom, front, and back. A foil is immediately adhered to and partially covers the housing. A top or bottom of the housing is covered by a first portion and a second portion of the foil wherein the first portion and the second portion are separated by a nonconductive gap. The gap extends from the front of the housing to the rear of the housing.