Abstract:
A wind turbine includes a number of blades and an optical measurement system comprising a light source, such as a laser, an optical transmitter part, an optical receiver part, and a signal processor. The light source is optically coupled to the optical transmitter part, which includes an emission point for emitting light in a probing direction. The optical receiver part comprises a receiving point and a detector. The optical receiver part is adapted for receiving a reflected part of light from a probing region along the probing direction and directing the reflected part of light to the detector to generate a signal used to determine a first velocity component of the inflow. The emission point is located in a first blade at a first radial distance from a center axis, and the receiving point is located in the first blade at a second radial distance from the center axis.
Abstract:
A wind turbine blade with a flow guiding device attached to a profiled contour on a pressure side of the blade is described. The flow guiding device has a front surface facing toward an oncoming airflow and comprises at least a first portion, which is angled towards the oncoming airflow and a leading edge of the wind turbine blade.
Abstract:
A blade for a rotor of a wind turbine having a substantially horizontal rotor shaft, the rotor comprising a hub, from which the blade extends substantially in a radial direction when mounted to the hub. The blade comprises a main blade part having a profiled contour comprising a pressure side and a suction side as well as a leading edge and a trailing edge with a chord extending between the leading edge and the trailing edge. The profiled contour generates a lift when being impacted by an incident airflow. The profiled contour is divided in the radial direction into a root region with a substantially circular or elliptical profile closest to the hub, the substantially circular or elliptical profile having a diameter, an airfoil region with a lift generating profile furthest away from the hub, and a transition region between the root region and the airfoil region. The profile of the transition region gradually changes in the radial direction from the circular or elliptical profile of the root region to the lift generating profile of the airfoil region. The blade further comprises a first auxiliary airfoil having a first pressure side and a first suction side as well as a first chord extending between a first leading edge and a first trailing edge. The first chord has a length that is 75% or less of the diameter of the substantially circular or elliptical profile in the root region and the first auxiliary airfoil is arranged so that it extends in the radial direction along at least a part of the root region of the main blade part with a distance there between.
Abstract:
A wind turbine blade having a longitudinal direction with a root end and a tip end as well as a chord extending in a transverse direction between a leading edge and a trailing edge is described. The blade comprises a flow control surface with a suction side and a pressure side. A number of boundary layer control means is formed in the flow control surface. The boundary layer control means include a channel submerged in the flow control surface with a first end facing towards the leading edge and a second end facing towards the trailing edge of the blade. The channel comprises: a bottom surface extending from the first end to the second end, a first sidewall extending between the flow control surface and the bottom surface and extending between the first end and the second end, the first sidewall forming a first sidewall edge between the first side wall and the flow control surface, and a second sidewall extending between the flow control surface and the bottom surface and extending between the first end and the second end, the second sidewall forming a second sidewall edge between the second side wall and the flow control surface. The channel at the first end comprises a first flow accelerating channel zone adapted for accelerating a flow, and at the second end comprises a second channel zone, where the first sidewall and the second sidewall are diverging towards the trailing edge of the blade.
Abstract:
A wind turbine blade with a flow guiding device attached to a profiled contour on a pressure side of the blade is described. The flow guiding device has a front surface facing toward an oncoming airflow and comprises at least a first portion, which is angled towards the oncoming airflow and a leading edge of the wind turbine blade.
Abstract:
The present invention relates to a design concept by which the power, loads and/or stability of a wind turbine may be controlled by typically fast variation of the geometry of the blades using active geometry control (e.g. smart materials or by embedded mechanical actuators), or using passive geometry control (e.g. changes arising from loading and/or deformation of the blade) or by a combination of the two methods. The invention relates in particular to a wind turbine blade, a wind turbine and a method of controlling a wind turbine.
Abstract:
A wind turbine blade with a flow guiding device attached to a profiled contour on a pressure side of the blade is described. The flow guiding device extends along at least a longitudinal part of a transition region of the blade and is arranged so as to generate a separation of airflow along at least a central longitudinal portion of the flow guiding device from the pressure side of the blade at a point between the flow guiding device and a trailing edge of the blade, when the blade is impacted by an incident airflow. The flow guiding device is arranged at a relative chordal position, seen from the leading edge of the blade, lying in an interval between 40% and 92%. The relative height of the flow guiding device is at least 10% of a maximum thickness of the profiled contour.
Abstract:
Disclosed is a wind turbine rotor blade includes a root portion, an airfoil portion, a thickened zone extending outward from an inner hub end of the blade into the airfoil portion of the blade; and an airflow correction arrangement arranged on a pressure side of the blade over at least a portion of the thickened zone. The airflow correction arrangement includes a spoiler to increase blade lift and a vortex generator arranged between a leading edge and the trailing edge and realized to maintain an attached airflow between the vortex generator and the spoiler. A wind turbine with at least one such rotor blade is disclosed. An airflow correction arrangement for correcting the airflow over the pressure side of a wind turbine rotor blade for a region of the blade having a thickened zone is further disclosed.
Abstract:
The present invention relates in a broad aspect to a method for design and modification of airfoils useful for wind turbine applications, which airfoils possess smooth and stable characteristics in stall. These characteristics comprise: (1) No or very little tendency to double stall, (2) Insensitivity or little sensitivity of maximum lift to leading edge roughness, (3) High lift-drag ratio just before maximum lift, (4) Small variations of the aerodynamic loads in stall and (5) Sufficient aerodynamic damping to suppress blade vibrations in stall. The invention further relates to blades and/or airfoil sections in general which posses smooth and stabile characteristics in stall. Also, it relates to a method of implementing the desired shape on an airfoil or a wind turbine blade.
Abstract:
A wind turbine blade with a flow guiding device attached to a profiled contour on a pressure side of the blade is described. The flow guiding device extends along at least a longitudinal part of a transition region of the blade and is arranged so as to generate a separation of airflow along at least a central longitudinal portion of the flow guiding device from the pressure side of the blade at a point between the flow guiding device and a trailing edge of the blade, when the blade is impacted by an incident airflow. The inflow surface, in at least the central longitudinal portion, is formed so that, for each transverse cross-section, a end point tangent to the inflow surface at the end point crosses the profiled contour at a crossing point, where the profiled contour has a profile tangent to the profiled contour, and wherein an angle between the profile tangent and the end point tangent is at least 45 degrees.