Abstract:
A mobile device uses an image-driven view management approach for annotating images in real-time. An image-based layout process used by the mobile device computes a saliency map and generates an edge map from a frame of a video stream. The saliency map may be further processed by applying thresholds to reduce the number of saliency levels. The saliency map and edge map are used together to determine a layout position of labels to be rendered over the video stream. The labels are displayed in the layout position until a change of orientation of the camera that exceeds a threshold is detected. Additionally, the representation of the label may be adjusted, e.g., based on a plurality of pixels bounded by an area that is coincident with a layout position for a label in the video frame.
Abstract:
Graphics processing in a client device includes receiving, as part of a vector streaming split rendering process, a bit stream encoding a sequence of shading atlases of the process. Each shading atlas includes blocks. The client decodes a particular shading atlas of the sequence of shading atlases, and determines that a particular block of the particular shading atlas was unsuccessfully decoded. The client identifies a stored block of a prior shading atlas of the sequence of shading atlases as a successfully decoded earlier version of the particular block. The client renders the particular shading atlas using the stored block instead of the particular block.
Abstract:
Aspects of the present disclosure provide a method for compressing a point cloud. The method includes determining a sub-division technique for the volume based on one or more numbers derived from a distribution of points in the volume, dividing the volume into a number of sub-volumes according to the sub-division technique, and determining whether each sub-volume of the sub-volumes is occupied by at least one point. The method includes generating a bit sequence for the volume comprising a control code that is based on the sub-division technique and an occupancy indicator that indicates whether or not each sub-volume is occupied by at least one point.
Abstract:
Techniques are presented for monocular visual simultaneous localization and mapping (SLAM) based on detecting a translational motion in the movement of the camera using at least one motion sensor, while the camera is performing panoramic SLAM, and initializing a three dimensional map for tracking of finite features. Motion sensors may include one or more sensors, including inertial (gyroscope, accelerometer), magnetic (compass), vision (camera) or any other sensors built into mobile devices.
Abstract:
A mobile device uses vision and orientation sensor data jointly for six degree of freedom localization, e.g., in wide-area environments. An image or video stream is captured while receiving geographic orientation data and may be used to generate a panoramic cylindrical map of an environment. A bin of model features stored in a database is accessed based on the geographic orientation data. The model features are from a pre-generated reconstruction of the environment produced from extracted features from a plurality of images of the environment. The reconstruction is registered to a global orientation and the model features are stored in bins based on similar geographic orientations. Features from the panoramic cylindrical map are matched to model features in the bin to produce a set of corresponding features, which are used to determine a position and an orientation of the camera.
Abstract:
Techniques are presented for constructing a digital representation of a physical environment. In some embodiments, a method includes obtaining image data indicative of the physical environment; receiving gesture input data from a user corresponding to at least one location in the physical environment, based on the obtained image data; detecting at least one discontinuity in the physical environment near the at least one location corresponding to the received gesture input data; and generating a digital surface corresponding to a surface in the physical environment, based on the received gesture input data and the at least one discontinuity.
Abstract:
A mobile device uses vision and orientation sensor data jointly for six degree of freedom localization, e.g., in wide-area environments. An image or video stream is captured while receiving geographic orientation data and may be used to generate a panoramic cylindrical map of an environment. A bin of model features stored in a database is accessed based on the geographic orientation data. The model features are from a pre-generated reconstruction of the environment produced from extracted features from a plurality of images of the environment. The reconstruction is registered to a global orientation and the model features are stored in bins based on similar geographic orientations. Features from the panoramic cylindrical map are matched to model features in the bin to produce a set of corresponding features, which are used to determine a position and an orientation of the camera.
Abstract:
The present disclosure relates to methods and apparatus for graphics processing. Aspects of the present disclosure can determine at least one scene including one or more viewpoints. Also, aspects of the present disclosure can divide the at least one scene into a plurality of zones based on each of the one or more viewpoints. Further, aspects of the present disclosure can determine whether a zone based on one viewpoint of the one or more viewpoints is substantially similar to a zone based on another viewpoint of the one or more viewpoints. Aspects of the present disclosure can also generate a geometry buffer for each of the plurality of zones based on the one or more viewpoints. Moreover, aspects of the present disclosure can combine the geometry buffers for each of the plurality of zones based on the one or more viewpoints.
Abstract:
Methods, systems, and devices for computer graphics are described. A device may perform a shadow rendering operation in an object-space shading pipeline for a set of potentially visible surfaces. The device may represent the potentially visible surfaces in an atlas. The device may determine a set of world-space coordinates corresponding to the one or more potentially visible surfaces and may store the set of world-space coordinates in a geometry buffer (G-buffer). The device may determine a number of shadow factors associated with the potentially visible surfaces based on a transformation of the world-space coordinates stored in the G-buffer and a set of depth values associated with each shadow caster present in a scene. The device may store the shadow factors in an atlas shadow mask and perform a shading of the potentially visible surfaces in the atlas based on the atlas shadow mask.
Abstract:
Techniques are presented for constructing a digital representation of a physical environment. In some embodiments, a method includes obtaining image data indicative of the physical environment; receiving gesture input data from a user corresponding to at least one location in the physical environment, based on the obtained image data; detecting at least one discontinuity in the physical environment near the at least one location corresponding to the received gesture input data; and generating a digital surface corresponding to a surface in the physical environment, based on the received gesture input data and the at least one discontinuity.