Abstract:
Association algorithms of newly-detected lane boundaries to lane boundaries can be made more robust through the use of generated or “dummy” states. Different types of dummy states can be used to identify outlier/erroneous detections and/or new, legitimate lane boundaries. Therefore, depending on a type of dummy state a newly-detected lane boundary is associated with, the newly-detected lane boundary can be ignored, or the associated dummy state can be added to the lane boundary states of the filter.
Abstract:
Techniques provided herein are directed toward virtually extending an updated set of output positions of a mobile device determined by a VIO by combining a current set of VIO output positions with one or more previous sets of VIO output positions in such a way that ensure all outputs positions among the various combined sets of output positions are consistent. The combined sets can be used for accurate position determination of the mobile device. Moreover, the position determination further may be based on GNSS measurements.
Abstract:
Techniques provide for accurately matching traffic signs observed in camera images with traffic sign data from 3D maps, which can allow for error correction in a position estimate of a vehicle based on differences in the location of the observed traffic sign and the location of the traffic sign based on 3D map data. Embodiments include preparing the data to allow for comparison between observed and map traffic sign data, conducting the comparison in a 2D frame (e.g., in the frame of the camera image) to make an initial order of proximity of candidate traffic signs in the map traffic sign data to the observed traffic sign, conducting a second comparison in a 3D frame (e.g. the frame of the 3D map) to determine an association based on the closest match, and using the association to perform error correction.
Abstract:
A range between a first wireless device and a second wireless device is estimated using a first mechanism based on messages transmitted over a first communication channel. The first communication channel is associated with a first radio access technology capability of the wireless devices. One or more metrics indicative of an accuracy of the range estimates provided by the first mechanism are obtained. A second mechanism to estimate a range between the first wireless device and the second wireless device may be implemented in favor of the first mechanism when the metric fails to satisfy a criterion. The second mechanism is based on unicast messages transmitted over a second communication channel. The second communication channel is associated with a second radio access technology capability of the wireless devices and may be the same as, or different from, the first communication channel.
Abstract:
An example of a method of determining a position of a device includes: receiving, with a receiver of the device, a signal from a reference emitter; obtaining a code phase measurement of the signal; obtaining a carrier phase measurement of the signal; calculating an intermediate quantity that is a function of the code phase measurement and the carrier phase measurement; calculating a carrier phase smoothed estimate of a code phase of the signal based, at least in part, on a robust aggregation of the intermediate quantity; and determining the position of the device based, at least in part, on the carrier phase smoothed estimate of the code phase.
Abstract:
Disclosed are implementations that include a method, at a mobile device, including receiving multiple broadcast messages transmitted by multiple stationary wireless devices, and obtaining first information relating to each of the multiple broadcast messages, with at least some of the first information being included in the multiple broadcast messages, and second information relating to at least one earlier broadcast communication received by at least one of the multiple stationary wireless devices, prior to transmission of the at least one of the multiple broadcast messages, from at least one other of the multiple stationary wireless devices, with the second information included in the at least one of the multiple broadcast messages. The method also include determining location information for the mobile device based on the first information, the second information, and known positions of at least some of the multiple stationary wireless devices.
Abstract:
Apparatus and method are provided for estimating the shortest time of arrival or the shortest round-trip time (RTT) of radio signals between communication devices in a wireless network. Filtering is performed by adaptive filters with suppressed side lobes adjustable in the time domain and widths of main lobes adjustable in the frequency domain to improve detection of signals on the shortest path of arrival or line-of-sight (LOS) path while mitigating the effects signals received from longer paths of arrival or non-line-of-sight (NLOS) paths.
Abstract:
Techniques and systems are provided for localization of an apparatus. For instance, a process can include: obtaining a map of an environment, the map including a map point representing an object in the environment; obtaining image data including the object in the environment, wherein the image data is associated with a camera pose; obtaining point information from the obtained image data, the obtained point information describing two or more points of the object in the obtained image data; determining whether to associate the point information with the map point based, at least in part, on a comparison of the map point and an estimated point, wherein the estimated point is estimated based on the camera pose and point information; and based on the determination to associate the point information with the map point, associating the point information with the map point to localize an apparatus.
Abstract:
Disclosed are techniques for wireless communication. In particular, aspects relate to configuring, triggering and/or transmitting relative and global position-orientation messages (e.g., from a vehicle equipped with sensors to enable estimation of relative and global position-orientation to a network entity).
Abstract:
Systems, methods, and devices for radio frequency (RF) ranging-aided localization and crowdsourced mapping are provided. In one aspect, a method performed by a user equipment (UE) includes obtaining sensor data comprising first radio frequency (RF) ranging data and imaging data. The method further includes tagging the first RF ranging data with location information and semantic information, wherein the semantic information is based on the imaging data, and wherein the semantic information indicates a first portion of the RF ranging data is associated with a static object type and a second portion of the RF ranging data is associated with a temporary-static object type different from the static object type. The method further includes transmitting, to a RF ranging assistance server, the first RF ranging data tagged with the location information and the semantic information.