Abstract:
Methods, systems, and devices are described for techniques for downlink (DL) scheduling and uplink (UL) scheduling in a shared radio frequency (RF) spectrum band. In some aspects, a wireless communication device may receive an UL data transmission grant associated with a channel of shared RF spectrum band. The wireless communication device may perform a channel readiness procedure associated with the channel. The wireless communication device may also transmit channel readiness information based at least in part on the channel readiness procedure to a base station. The channel readiness information may be transmitted via an uplink channel of a licensed RF spectrum band different from the shared RF band. In other aspects, a base station may schedule a data transmission on one or more channels of a shared RF spectrum band. The base station may transmit a data transmission grant for the scheduled data transmission to a wireless communication device.
Abstract:
A method for determining a region of an image is described. The method includes presenting an image of a scene including one or more objects. The method also includes receiving an input selecting a single point on the image corresponding to a target object. The method further includes obtaining a motion mask based on the image. The motion mask indicates a local motion section and a global motion section of the image. The method further includes determining a region in the image based on the selected point and the motion mask.
Abstract:
A device (300) for displaying panoramic images includes an image sensor (315), a panoramic display module (345) and a display (325). The display (110, 200) displays an annular panorama view (120, 210). The annular view (120, 210) may be an incomplete annulus for illustrating a missing view angle (126) from an incomplete panoramic image. The display (200) further includes a window (220) and a high resolution display portion (240). The window (220) bounds a portion (230) of the annular view (210). The high resolution display portion (240) displays a high resolution image corresponding to the portion (230) of the annular view (210). The window (220) is movable around the annular view (210). A size of the window (220) or the high resolution display portion (240) is adjustable. A method for generating a panoramic image is also provided.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may perform a clear channel assessment (CCA) procedure on a channel that includes multiple sub-bands of a radio frequency spectrum band. The base station may determine that the channel is available based on the CCA and transmit a special header in the channel. In some examples, the special header may include multiple transmission time intervals (TTIs), where each TTI may include a header packet in each sub-band of the radio frequency spectrum band. In some cases, the header packet may include a clear to send (CTS)-to-self frame structure. The base station may transmit a first TTI across each of the sub-bands at a first power level, and transmit additional TTIs across the sub-bands at a different power level. Additional header packets may be transmitted at the boundaries of subsequent subframes.
Abstract:
A method for interactive image caricaturing by an electronic device is described. The method includes detecting at least one feature location of an image. The method further includes generating, based on the at least one feature location, an image mesh that comprises a grid of at least one horizontal line and at least one vertical line. The method additionally includes obtaining a gesture input. The method also includes determining at least one caricature action based on the at least one gesture input. The method further includes generating a caricature image based on the image mesh, the at least one caricature action and the image.
Abstract:
Techniques provided herein are directed toward virtually extending an updated set of output positions of a mobile device determined by a VIO by combining a current set of VIO output positions with one or more previous sets of VIO output positions in such a way that ensure all outputs positions among the various combined sets of output positions are consistent. The combined sets can be used for accurate position determination of the mobile device. Moreover, the position determination further may be based on GNSS measurements.
Abstract:
Disclosed is an apparatus and method for classifying a motion state of a mobile device. In one embodiment, accelerometer data representing acceleration components along orthogonal x, y, and z axes of the mobile device are collected. A presence or absence of a half-step frequency relationship between the accelerometer data is determined. Last, the motion state of the device is determined based at least in part on the presence or absence of the half-step frequency relationship.
Abstract:
Methods, systems, and devices are described for techniques for downlink (DL) scheduling and uplink (UL) scheduling in a shared radio frequency (RF) spectrum band. In some aspects, a wireless communication device may receive an UL data transmission grant associated with a channel of shared RF spectrum band. The wireless communication device may perform a channel readiness procedure associated with the channel. The wireless communication device may also transmit channel readiness information based at least in part on the channel readiness procedure to a base station. The channel readiness information may be transmitted via an uplink channel of a licensed RF spectrum band different from the shared RF band. In other aspects, a base station may schedule a data transmission on one or more channels of a shared RF spectrum band. The base station may transmit a data transmission grant for the scheduled data transmission to a wireless communication device.
Abstract:
A peak angular velocity time, at which a peak value of an angular velocity around a vertical axis of a vehicle occurs while the vehicle is turning, may be determined. A peak lateral acceleration time, at which a peak value of linear acceleration along a lateral axis occurs while the vehicle is turning, also may be determined. The peak angular velocity time and the peak lateral acceleration time may be determined according to input from inertial sensors of a mobile device. The lateral axis may be perpendicular to the vertical axis and perpendicular to a longitudinal axis of the vehicle. A first time difference between the peak angular velocity time and the peak lateral acceleration time may be calculated. Based at least in part on the time difference, it may be determined whether the mobile device is in a front area of the vehicle.
Abstract:
A method for interactive image caricaturing by an electronic device is described. The method includes detecting at least one feature location of an image. The method further includes generating, based on the at least one feature location, an image mesh that comprises a grid of at least one horizontal line and at least one vertical line. The method additionally includes obtaining a gesture input. The method also includes determining at least one caricature action based on the at least one gesture input. The method further includes generating a caricature image based on the image mesh, the at least one caricature action and the image.