Abstract:
Certain embodiments of the present disclosure relate to a method for improving the effective coverage of nodes within a peer-to-peer (P2P) wireless network. Collection of nodes of the P2P network can have a larger aggregate coverage footprint than any given single node. This inherent multi-site property of P2P wireless networks can be exploited to provide each node with benefits of multi-user diversity, thus improving discovery of devices in the P2P network.
Abstract:
A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
Abstract:
Certain embodiments of the present disclosure relate to a method for increasing a capacity in a peer-to-peer (P2P) wireless network. A scheme has been proposed in which well-connected nodes of the P2P wireless network can be exploited in a manner that increases the overall connectivity of all the nodes in the network.