Abstract:
An electric motor communication system for use with a fluid moving system is provided. The electric motor communication system includes an electric motor including a wireless communication device configured to transmit and receive wireless signals, and a processing device coupled to the wireless communication device and configured to control the electric motor based at least in part on wireless signals received at the wireless communication device. The electric motor communication system further includes at least one external device configured to communicate wirelessly with the electric motor.
Abstract:
Controllers for controlling hybrid motor drive circuits configured to drive a motor are provided herein. A controller is configured to drive the motor using an inverter when a motor commanded frequency is not within a predetermined range of line input power frequencies, and couple line input power to an output of the inverter using a first switch device when the motor commanded frequency is within the predetermined range of line input power frequencies.
Abstract:
An electric motor controller, an electric motor drive circuit, and methods for combined electric motor control are provided. The drive circuit is configured to drive a first electric motor and a second electric motor. The drive circuit includes a rectifier configured to convert an AC input voltage to a pulsed DC voltage, and a first DC link electrically coupled to the rectifier. The first DC-link includes a low-capacitance capacitor having a capacitance less than 10 μF. The drive circuit also includes a first inverter coupled to the first DC-link, the first inverter configured to generate a conditioned output voltage to drive the first electric motor, a second DC-link electrically coupled to the first DC-link, and a second inverter coupled to the second DC-link. The second inverter is configured to generate a conditioned output voltage to drive the second electric motor.
Abstract:
A motor controller is provided that includes an inverter configured to drive an electric motor, a rectifier configured to rectify an alternating current (AC) input current and to output the rectified AC input current to the inverter, and a controller coupled to the inverter. The controller is configured to improve a power factor of the motor controller by controlling the AC input current based on a direct current (DC) link voltage measurement.
Abstract:
A motor controller is provided that includes an inverter configured to drive an electric motor, a rectifier configured to rectify an alternating current (AC) input current and to output the rectified AC input current to the inverter, and a controller coupled to the inverter. The controller is configured to improve a power factor of the motor controller by controlling the AC input current based on a direct current (DC) link voltage measurement.
Abstract:
Protection of a motor controller from a transient voltage and/or an over-voltage condition is described. A drive circuit includes a rectifier portion and at least one inductive device coupled to the rectifier portion. The drive circuit further includes at least one voltage clamping device coupled in parallel with the at least one inductive device, and at least one switching device configured to open as a function of a direct current (DC) link voltage value.
Abstract:
An electric motor communication system for use with a fluid moving system is provided. The electric motor communication system includes an electric motor including a wireless communication device configured to transmit and receive wireless signals, and a processing device coupled to the wireless communication device and configured to control the electric motor based at least in part on wireless signals received at the wireless communication device. The electric motor communication system further includes at least one external device configured to communicate wirelessly with the electric motor.
Abstract:
Controllers for controlling hybrid motor drive circuits configured to drive a motor are provided herein. A controller is configured to drive the motor using an inverter when a motor commanded frequency is not within a predetermined range of line input power frequencies, and couple line input power to an output of the inverter using a first switch device when the motor commanded frequency is within the predetermined range of line input power frequencies.
Abstract:
A control system for an electric motor configured to drive a fluid-moving apparatus. The control system includes a drive circuit and a processor coupled in communication with the drive circuit. The processor is configured to control the drive circuit to operate the electric motor at a plurality of control values of a control parameter and determine, for each of the plurality of control values, a fluid-flow value and a feedback value, the feedback value corresponding to a feedback parameter, compute a mathematical relationship between fluid-flow rate and one of the control parameter or the feedback parameter, receive a fluid-flow rate demand value, compute an operating setpoint for the control parameter based on the fluid-flow rate demand value and the computed mathematical relationship, and control the drive circuit to operate the electric motor at the operating setpoint.
Abstract:
One aspect of the disclosure includes a fluid moving system. The fluid moving system includes a fluid moving apparatus configured to convey a fluid through a housing from an inlet to an outlet. The fluid moving system includes an active cleaning device configured to neutralize or remove at least a portion of an undesired matter from the fluid conveyed through the housing. The fluid moving system includes an electric motor including a rotor coupled to the fluid moving apparatus and configured to turn the fluid moving apparatus upon application of electric power to a stator of the electric motor. The fluid moving system includes a motor controller communicatively coupled to the electric motor and configured to control at least one of a speed output or a torque output thereof.