Abstract:
The present invention discloses a flyback converter, a primary side control circuit therein, and a control method thereof. The flyback converter includes: a transformer circuit, a power switch circuit, a primary side control circuit, a synchronous rectification (SR) switch, and a synchronous rectification (SR) control circuit. When a feedback signal indicates that a difference between a target output voltage and an actual output voltage increases, the primary side control circuit increases an operation frequency of an operation signal by step-wisely reducing a cycle period of the operation signal in response to the increase of the difference, wherein the cycle period of the operation signal is reduced by a predetermined unit of time in each step, such that the cycle period of the operation signal is a step function of the increase of the difference.
Abstract:
The present invention provides a flyback power converter and a control circuit thereof. The flyback power converter includes a transformer, a power switch, a driver, a synchronous rectification (SR) switch, a controller, and a signal coupler circuit. The transformer has a primary winding and a secondary winding. The power switch controls the conduction time of the primary winding; and the SR switch controls the conduction time of the secondary winding. The controller controls the SR switch and generates an ON pulse signal and an OFF pulse signal in a normal operation mode. When an output voltage reaches a lower limit voltage, the flyback power converter operates in the normal operation mode. The driver generates a switching signal according to the ON pulse signal and the OFF pulse signal in the normal operation mode, to determine a start conduction time point and an end conduction time point of the primary winding.
Abstract:
The present invention discloses a power converter, a switch control circuit, and a short circuit detection method for current sensing resistor of the power converter. The power converter includes: a transformer, a power switch, a current sensing resistor and a switch control unit. The current sensing resistor has one end coupled to the power switch and another end coupled to ground. The switch control unit generates the operation signal to control the power switch. The switch control unit generates a first sample-and-hold voltage at a first time point and a second sample-and-hold voltage at a second time point according to a voltage across the current sensing resistor. When a voltage difference between the first sample-and-hold voltage and the second sample-and-hold voltage is smaller than a reference voltage, it is determined that a short circuit occurs in the current sensing resistor.
Abstract:
A flyback power converter circuit includes a transformer, a blocking switch, a primary side switch, a primary side controller circuit and a secondary side controller circuit. The transformer is coupled between an input voltage and an internal output voltage in an isolated manner. The blocking switch controls the electric connection between the internal output voltage and an external output voltage. In a standby mode, the internal output voltage is regulated to a standby voltage, and the blocking switch is controlled to be OFF; in an operation mode, the internal output voltage is regulated to an operating voltage, and the blocking switch is controlled to be ON, such that the external output voltage has the operating voltage. The standby voltage is smaller than the operating voltage, so that the power consumption of the flyback power converter circuit is reduced in the standby mode.
Abstract:
A flyback power converter circuit includes: a power transformer, a primary side switch and a conversion control circuit. In a DCM, during a dead time, the conversion control circuit calculates an upper limit frequency corresponding to output current according to a frequency upper limit function, and obtains a frequency upper limit masking period according to a reciprocal of the upper limit frequency, wherein the frequency upper limit masking period is a period starting from when the primary side switch is turned ON. During an upper limit selection period, the conversion control circuit selects a valley among one or more valleys in a ringing signal related to a voltage across the primary side switch as an upper limit locked valley, so that the conversion control circuit once again turns ON the primary side switch at a beginning time point of the upper limit locked valley.
Abstract:
A ZVS (zero voltage switching) control circuit for controlling a flyback power converter includes: a primary side controller circuit for generating a switching signal, to control a primary side switch; and a secondary side controller circuit for generating a synchronous rectifier (SR) control signal for controlling a synchronous rectifier switch. The SR control signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the synchronous rectifier switch to perform secondary side synchronous rectification. The secondary side controller circuit determines a trigger timing point of the ZVS pulse according to a waveform characteristic of a ringing signal, to control the synchronous rectifier switch to be ON for a predetermined period, thereby achieving zero voltage switching of the primary side switch. The primary side or the secondary side controller circuit includes a jitter controller for performing jitter control on the ZVS pulse.
Abstract:
A flyback power converter circuit includes: a transformer including a primary side winding coupled to an input power and a secondary side winding coupled to an output node, wherein the input power includes an input voltage; a primary side switch coupled to the primary side winding for controlling the input power to generate an output power on the output node through the secondary side winding, wherein the output power includes an output voltage; a clamping circuit including an auxiliary switch and an auxiliary capacitor connected in series to form an auxiliary branch which is connected with the primary side winding in parallel; and a conversion control circuit for adjusting an ON time of the auxiliary switch according to at least one of a current related signal, the input voltage, and the output voltage, such that the primary side switch is zero voltage switching when turning ON.
Abstract:
A flyback power converter circuit includes: a transformer, including a primary winding coupled to an input power and a secondary winding coupled to an output node; a primary side switch coupled to the primary winding for switching the input power to generate an output power on the output node through the secondary winding; a clamping circuit including an auxiliary switch and an auxiliary capacitor which are connected in series to form an auxiliary branch which is connected with the primary winding in parallel; and a conversion control circuit adjusting an auxiliary dead time according to a primary side switch related signal and a switching voltage related signal such that the primary side switch is zero voltage switching at a time point when the primary side switch is turned ON.
Abstract:
A flyback power converter includes a transformer, a power switch, a power switch control circuit, a synchronous rectification (SR) switch, an SR switch control circuit, and a signal coupler circuit. The signal coupler circuit includes a primary port and a secondary port, wherein the primary port is electrically connected to the power switch control circuit, and the secondary port is electrically connected to the SR switch control circuit. The primary port and the secondary port receive different signals generated by the power switch control circuit and the SR switch control circuit respectively, and the signal coupler circuit senses and converts the different signals to generate corresponding converted signals at the secondary port and the primary port respectively in different and non-overlapping time periods, without direct contact or direct connection between the primary side and the secondary side of the transformer.
Abstract:
An adaptive buck converter of a charging cable includes: a power receiving interface for receiving a DC voltage and a cable current from a cable; a terminal communication interface for transmitting a charging voltage and a charging current to a connection terminal of the charging cable and for receiving a communication signal generated by the mobile device from the connection terminal; a power converting circuit for receiving the DC voltage and the cable current from the power receiving interface and for generating the charging voltage and the charging current, wherein the charging voltage is lower than the DC voltage while the charging current is greater than the cable current; and a data processing circuit coupled with the power converting circuit and configured for controlling the power converting circuit according to the communication signal.