Method of measuring oxide thickness during semiconductor fabrication
    21.
    发明授权
    Method of measuring oxide thickness during semiconductor fabrication 失效
    测量半导体制造过程中氧化物厚度的方法

    公开(公告)号:US06228665B1

    公开(公告)日:2001-05-08

    申请号:US09597637

    申请日:2000-06-20

    IPC分类号: G01R3126

    CPC分类号: H01L22/12

    摘要: A measurement of thickness of a metal oxide layer on a solder ball connection during semiconductor fabrication is demonstrated by an in-situ capacitance measurement of the oxide layer. A linear relationship is shown between the reactance of the metal oxide and its thickness. This linearity is derived empirically, and correlated to Auger Spectroscopy test results for accuracy. The linear relationship demonstrated with these measurements exhibits a linear correlation coefficient, R2, greater than or equal to 0.974. This close, linear relationship allows for accurate testing of the oxide thickness using standard electrical parameter measurements during wafer fabrication. The method requires the determination of an analytical relationship between dielectric thickness and dielectric capacitance; the performance of an in-situ test of the dielectric layer capacitance including measuring the dielectric layer capacitance; and, the calculation of the dielectric layer thickness by using reactance values, calculated from the measured dielectric layer capacitance, as a variable within the analytical relationship.

    摘要翻译: 通过氧化物层的原位电容测量来证明在半导体制造期间焊球连接上的金属氧化物层的厚度的测量。 金属氧化物的电抗与其厚度之间呈线性关系。 这种线性是经验派生的,并与俄歇光谱测试结果相关,以获得准确性。 用这些测量证明的线性关系表现出线性相关系数R2,大于或等于0.974。 这种密切的线性关系允许在晶片制造期间使用标准电参数测量来精确测量氧化物厚度。该方法需要确定介电厚度和介电电容之间的分析关系; 介质层电容的原位测试的性能包括测量介电层电容; 并且通过使用由测量的介电层电容计算的电抗值作为分析关系中的变量来计算电介质层厚度。

    Product wafer junction leakage measurement using corona and a kelvin
probe
    22.
    发明授权
    Product wafer junction leakage measurement using corona and a kelvin probe 失效
    使用电晕和开尔文探头的产品晶圆结漏电测量

    公开(公告)号:US6104206A

    公开(公告)日:2000-08-15

    申请号:US906199

    申请日:1997-08-05

    申请人: Roger L. Verkuil

    发明人: Roger L. Verkuil

    IPC分类号: G01R31/311 G01R31/26 G01R1/04

    CPC分类号: G01R31/311

    摘要: Corona charge is applied to a semiconductor product wafer to reverse bias PN junctions. Measurements of voltage decay in the dark and in the light are made and combined to determine a PN junction leakage characteristic. A portion of the dark measurement is taken in the light to permit normalizing the light and dark measurements.

    摘要翻译: 将电晕电荷施加到半导体产品晶片以反向偏置PN结。 在黑暗和光中进行电压衰减的测量并组合以确定PN结泄漏特性。 暗部测量的一部分在光线中被摄取,以使得能够对光和暗测量进行归一化。

    Mobile charge measurement using corona charge and ultraviolet light
    23.
    发明授权
    Mobile charge measurement using corona charge and ultraviolet light 失效
    使用电晕电荷和紫外线进行移动电荷测量

    公开(公告)号:US5834941A

    公开(公告)日:1998-11-10

    申请号:US909176

    申请日:1997-08-11

    申请人: Roger L. Verkuil

    发明人: Roger L. Verkuil

    摘要: Corona charge is applied to an oxide layer on a semiconductor wafer. Then ultraviolet light is used to erase a grid pattern of the corona charge. Opposite polarity corona charge is then applied to the layer, resulting in a grid of field-induced PN junctions. The surface photovoltage of the junctions is measured over time to provide a measure of the mobile charge in the oxide layer.

    摘要翻译: 将电晕电荷施加到半导体晶片上的氧化物层。 然后使用紫外线去除电晕电荷的格栅图案。 然后将相反极性的电晕电荷施加到该层,导致场诱导的PN结的网格。 随时间测量结的表面光电压以提供氧化物层中的移动电荷的量度。

    Method and apparatus for measurement of mobile charges with a corona
screen gun
    24.
    发明授权
    Method and apparatus for measurement of mobile charges with a corona screen gun 失效
    用电晕屏枪测量移动电荷的方法和装置

    公开(公告)号:US5767693A

    公开(公告)日:1998-06-16

    申请号:US706459

    申请日:1996-09-04

    申请人: Roger L. Verkuil

    发明人: Roger L. Verkuil

    摘要: The surface of a wafer is charged with corona passing through a screen. The screen is part of a feedback loop that forces a constant corona current. This results in the potential of the wafer surface following the potential of the screen. This allows contemporaneous measurement of the surface charge and potential that are used to measure mobile charge in an oxide layer on the wafer.

    摘要翻译: 晶片的表面带有通过屏幕的电晕。 屏幕是强制恒定电晕电流的反馈回路的一部分。 这导致晶片表面跟随屏幕电位的电位。 这允许同时测量用于测量晶片上的氧化物层中的移动电荷的表面电荷和电位。

    Contactless technique for measuring epitaxial dopant concentration
profiles in semiconductor wafers
    25.
    发明授权
    Contactless technique for measuring epitaxial dopant concentration profiles in semiconductor wafers 失效
    用于测量半导体晶片中外延掺杂浓度分布的非接触式技术

    公开(公告)号:US5216362A

    公开(公告)日:1993-06-01

    申请号:US774532

    申请日:1991-10-08

    申请人: Roger L. Verkuil

    发明人: Roger L. Verkuil

    CPC分类号: G01R31/2831

    摘要: The dopant concentration of a semiconductor wafer is determined using a contactless technique. First, a temporary P-N junction is formed in the surface of the semiconductor wafer using corona discharge. Then, the area of the junction is measured, and the depletion region is deepened, again by corona discharge. The depletion region is collapsed using light, and as the depletion region collapses, the surface potential is measured as a function of time. The charge which drains as the depletion layer collapses is directly proportional to the change in time. Since the total charge is known from the original corona discharge used to establish the depletion layer, as are the unit area and the surface voltage, the dopant profile is directly calculatable as a function of the surface voltage and the charge per unit area.

    摘要翻译: 使用非接触式技术确定半导体晶片的掺杂剂浓度。 首先,使用电晕放电在半导体晶片的表面形成临时P-N结。 然后,测量结的面积,再次通过电晕放电使耗尽区加深。 耗尽区域使用光折叠,并且当耗尽区域崩溃时,表面电位被测量为时间的函数。 当耗尽层崩溃时排出的电荷与时间的变化成正比。 由于从用于建立耗尽层的原始电晕放电知道总电荷,单位面积和表面电压也可以直接计算掺杂剂分布,作为表面电压和每单位面积的电荷的函数。

    Contactless technique for semicondutor wafer testing
    26.
    发明授权
    Contactless technique for semicondutor wafer testing 失效
    半导体晶圆测试的非接触式技术

    公开(公告)号:US4812756A

    公开(公告)日:1989-03-14

    申请号:US89648

    申请日:1987-08-26

    CPC分类号: G01R31/2831 G01R15/165

    摘要: A contactless technique for semiconductor wafer testing comprising: depositing charges on the top surface of an insulator layer over the wafer to create an inverted surface with a depletion region and thereby a field-induced junction therebelow in the wafer, with an accumulated guard ring on the semiconductor surface therearound. The technique further includes the step of changing the depth to which the depletion region extends below the inverted semiconductor wafer surface to create a surface potential transient, and the step of measuring a parameter of the resultant surface potential transient. This technique may be utilized to make time retention and epi doping concentration measurements. It is especially advantageous for reducing the effects of surface leakage on these measurements. In a preferred embodiment, corona discharges are used to effect the charge deposition configuration. Either corona discharge or photon injection are used to change the depletion region depth.