摘要:
In one embodiment, a cache comprises a data memory comprising a plurality of data entries, each data entry having capacity to store a cache block of data, and a cache control unit coupled to the data memory. The cache control unit is configured to dynamically allocate a given data entry in the data memory to store a cache block being cached or to store data that is not being cache but is being staged for retransmission on an interface to which the cache is coupled.
摘要:
In one embodiment, a system comprises at least one processor and a peripheral interface controller coupled to the processor. Further coupled to receive transactions from a peripheral interface, the peripheral interface controller is configured to accumulate freed credits for a given transaction type of a plurality of transaction types that are not yet returned to a transmitter on the peripheral interface. The peripheral interface controller is also configured to cause transmission of a flow control update transaction on the peripheral interface responsive to a number of the freed credits exceeding a threshold amount that is less than a total number of credits allocated to the given transaction type.
摘要:
In various embodiments, an apparatus comprises a plurality of agents and an interconnect. In one embodiment, the plurality of agents includes first through fourth agents. The interconnect comprises a plurality of segments that are switchable (e.g. using a plurality of selection circuits) to form communication paths between the agents, and a first segment is included in a first communication path from the first agent to the second agent, and is also included in a second communication path from the third agent to the fourth agent. In another embodiment, each segment is driven by a selection circuit. At least one selection circuit has at least one segment and an output from at least one agent as inputs. In yet another embodiment, an arbiter is configured to determine a communication path on the interconnect for each requesting agent to the destination agent over the segments. The arbiter is configured to arbitrate among a subset of requests for which each segment in the corresponding communication path is available.
摘要:
In one embodiment, a switch is configured to be coupled to an interconnect. The switch comprises a plurality of storage locations and an arbiter control circuit coupled to the plurality of storage locations. The plurality of storage locations are configured to store a plurality of requests transmitted by a plurality of agents. The arbiter control circuit is configured to arbitrate among the plurality of requests stored in the plurality of storage locations. A selected request is the winner of the arbitration, and the switch is configured to transmit the selected request from one of the plurality of storage locations onto the interconnect. In another embodiment, a system comprises a plurality of agents, an interconnect, and the switch coupled to the plurality of agents and the interconnect. In another embodiment, a method is contemplated.
摘要:
In an embodiment, a memory controller includes multiple ports. Each port may be dedicated to a different type of traffic. In an embodiment, quality of service (QoS) parameters may be defined for the traffic types, and different traffic types may have different QoS parameter definitions. The memory controller may be configured to schedule operations received on the different ports based on the QoS parameters. In an embodiment, the memory controller may support upgrade of the QoS parameters when subsequent operations are received that have higher QoS parameters, via sideband request, and/or via aging of operations. In an embodiment, the memory controller is configured to reduce emphasis on QoS parameters and increase emphasis on memory bandwidth optimization as operations flow through the memory controller pipeline.
摘要:
In one embodiment, an apparatus comprises a first interface circuit, a direct memory access (DMA) controller coupled to the first interface circuit, and a host coupled to the DMA controller. The first interface circuit is configured to communicate on an interface according to a protocol. The host comprises at least one address space mapped, at least in part, to a plurality of memory locations in a memory system of the host. The DMA controller is configured to perform DMA transfers between the first interface circuit and the address space, and the DMA controller is further configured to perform DMA transfers between a first plurality of the plurality of memory locations and a second plurality of the plurality of memory locations.
摘要:
In an embodiment, a memory controller includes multiple ports. Each port may be dedicated to a different type of traffic. In an embodiment, quality of service (QoS) parameters may be defined for the traffic types, and different traffic types may have different QoS parameter definitions. The memory controller may be configured to scheduled operations received on the different ports based on the QoS parameters. In an embodiment, the memory controller may support upgrade of the QoS parameters when subsequent operations are received that have higher QoS parameters, via sideband request, and/or via aging of operations. In an embodiment, the memory controller is configured to reduce emphasis on QoS parameters and increase emphasis on memory bandwidth optimization as operations flow through the memory controller pipeline.
摘要:
In one embodiment, an apparatus comprises a first interface circuit, a direct memory access (DMA) controller coupled to the first interface circuit, and a host coupled to the DMA controller. The first interface circuit is configured to communicate on an interface according to a protocol. The host comprises at least one address space mapped, at least in part, to a plurality of memory locations in a memory system of the host. The DMA controller is configured to perform DMA transfers between the first interface circuit and the address space, and the DMA controller is further configured to perform DMA transfers between a first plurality of the plurality of memory locations and a second plurality of the plurality of memory locations.
摘要:
These and other aspects of the present invention will be better described with reference to the Detailed Description and the accompanying figures. A method and apparatus for out-of-order processing of packets using linked lists is described. In one embodiment, the method includes receiving packets in a global order, the packets being designated for different ones of a plurality of reorder contexts. The method also includes storing information regarding each of the packets in a shared reorder buffer. The method also includes for each of the plurality of reorder contexts, maintaining a reorder context linked list that records the order in which those of the packets that were designated for that reorder context and that are currently stored in the shared reorder buffer were received relative to the global order. The method also includes completing processing of at least certain of the packets out of the global order and retiring the packets from the shared reorder buffer out of the global order for at least certain of the packets.
摘要:
In one embodiment, a switch is configured to be coupled to an interconnect. The switch comprises a plurality of storage locations and an arbiter control circuit coupled to the plurality of storage locations. The plurality of storage locations are configured to store a plurality of requests transmitted by a plurality of agents. The arbiter control circuit is configured to arbitrate among the plurality of requests stored in the plurality of storage locations. A selected request is the winner of the arbitration, and the switch is configured to transmit the selected request from one of the plurality of storage locations onto the interconnect. In another embodiment, a system comprises a plurality of agents, an interconnect, and the switch coupled to the plurality of agents and the interconnect. In another embodiment, a method is contemplated.