Abstract:
An embodiment converter circuit comprises an analog-to-digital signal conversion path. An input port receives an analog input signal having an offset, and an output port delivers a digital output signal quantized over M levels. The digital output signal is sensed by a digital-to-analog feedback path which comprises a digital-to-analog converter applying to the input port an analog feedback signal produced as a function of an M-bit digital word under control of a two-state signal having alternating first and second states. M-bit digital word generation circuitry coupled to the digital-to-analog converter and sensitive to the two-state signal produces, alternately, during the first states, a first M-bit digital word which is a function of the digital output signal quantized over M levels, and, during the second states, a second M-bit digital word which is a function a correction value of the offset in the analog input signal.
Abstract:
A circuit for generating a bandgap voltage includes a circuit module for generation of a base-emitter voltage difference formed by a pair of PNP bipolar substrate transistors which identify a first current path and a second current path. A first current mirror of an n type is connected between the first and second branches and is further connected via a resistance for adjustment of the bandgap voltage to the second bipolar transistor. A second current mirror of a p type is connected between the first and second branches, and connected so that the current mirrors repeat current of each other. In operation to generate the bandgap voltage, current flows from the supply voltage to ground only through said the first and second bipolar substrate transistors.
Abstract:
A touchscreen resistive sensor includes a network of resistive sensor branches coupled to a number of sensor nodes arranged at touch locations of the touchscreen. A test sequence is performed by sequentially applying to each sensor node a reference voltage level, jointly coupling to a common line the other nodes, sensing a voltage value at the common line, and declaring a short circuit condition as a result of the voltage value sensed at the common line reaching a short circuit threshold. A current value level flowing at the sensor node to which the reference voltage level is applied is sensed and a malfunction of the resistive sensor branch coupled with the sensor node to which a reference voltage level is applied is generated as a result of the current value sensed at the sensor node reaching an upper threshold or lower threshold.
Abstract:
A circuit includes a first current source configured to produce a first current in a first current line through a first diode-connected transistor having a voltage drop across the first diode-connected transistor, the first current being proportional to an absolute temperature via a first proportionality factor; a second current source configured to produce a second current in a second current line through a second diode-connected transistor having a voltage drop across the second diode-connected transistor, the second current being proportional to the absolute temperature via a second proportionality factor; a third current source configured to produce a third current in a third current line through a third diode-connected transistor having a voltage drop across the third diode-connected transistor; and a processing network including a sigma-delta analog-to-digital converter, the processing network being coupled to the, the second, and the third diode-connected transistors.
Abstract:
A circuit for generating a bandgap voltage includes a circuit module for generation of a base-emitter voltage difference comprising a pair of PNP bipolar substrate transistors which identify a first current path and a second current path. A first current mirror of an n type is connected between the first and second branches and is further connected via a resistance for adjustment of the bandgap voltage to the second bipolar transistor. A second current mirror of a p type is connected between the first and second branches, and connected so that the current mirrors repeat current of each other. In operation to generate the bandgap voltage, current flows from the supply voltage to ground only through said the first and second bipolar substrate transistors.
Abstract:
A circuit for generating a bandgap voltage includes a circuit module for generation of a base-emitter voltage difference comprising a pair of PNP bipolar substrate transistors which identify a first current path and a second current path. A first current mirror of an n type is connected between the first and second branches and is further connected via a resistance for adjustment of the bandgap voltage to the second bipolar transistor. A second current mirror of a p type is connected between the first and second branches, and connected so that the current mirrors repeat current of each other. In operation to generate the bandgap voltage, current flows from the supply voltage to ground only through said the first and second bipolar substrate transistors.
Abstract:
An embodiment of a circuit includes an input node, a generator, a combiner, a converter, and a filter. The input node is configured to receive an input signal in a first domain, and the generator is configured to generate a periodic signal in the first domain. The combiner is configured to combine the input and periodic signals into a resulting signal in the first domain, and the converter is configured to convert the resulting signal into a converted signal in a second domain. And the filter is configured to remove from the converted signal substantially all of a frequency component of the converted signal having substantially a same frequency as a frequency component of the periodic signal.