Abstract:
Described herein are apparatus and methods for digitally enhancing digital-to-analog converter (DAC) resolution. A digitally enhanced DAC includes a decoder circuit configured to convert a N-bit input data to at least N code bits, a digital enhancement circuit configured to logically operate on a least significant bit (LSB) of the N-bit data, and a switching network including at least N DAC unit elements, where a least significant DAC unit element is controlled by the digital enhancement circuit to output a factored nominal current or voltage when a logical operation outputs a defined logic level for the LSB and to output a nominal current or voltage absent output of the defined logic level and a remaining DAC unit elements are controlled by a remaining code bits of the at least N code bits. This provides a N+1 bit resolution for the DAC without increasing the at least N DAC unit elements.
Abstract:
Analog-to-information converter and method for performing analog-to-information conversion samples and down-converts N samples of an input multi-band signal using M analog sampling filters or samplers, where N is less than M. The N samples of the input multi-band signal are digitized to produce N digital samples of the input multi-band signal, which are multiplexed into M digital samples of the input multi-band signal. The M digital samples are up-converted and filtered at M digital reconstruction filters to produce a digital multi-band signal, which is processed at a processing unit to obtain information contained in the digital multi-band signal.
Abstract:
There is provided a transmission device configured to serialize data of a change amount that is based on a signal acquired from a sensor, and transmit the data by simplex communication.
Abstract:
A novel noise injection technique is presented to improve dynamic range with low resolution and low speed analog to digital converters. This technique combines incoming signal and noise signal with wave front de-multiplexer and split into several channels. Then low resolution and low speed analog to digital converters are used to sample each channels. All signals are recovered using wave front multiplexer. For advanced design, ground diagnostic signals with optimizing processor can be added to guarantee recovery quality.
Abstract:
A capacitive sensing system operates according to a method which uses an ADC with a low resolution r, to produce a digital signal with a higher resolution R. The analog signal to be digitized is modulated with a triangular or saw-tooth modulating signal, so that a modulated analog signal is obtained, which is sampled with the ADC. Thereby, digital samples are produced. An average is taken over N (>1) successive digital samples. The triangular or saw-tooth signal is chosen to have a peak-to-peak amplitude corresponding at least approximately to an integer multiple L, with L≧1, of the quantization step size of the ADC. The saw-tooth or triangular signal, furthermore, has a number M, of periods per each sequence of N samples. M and N are chosen such that M>1 and M≠N and such that R=r*N/(k*gcd(N, M)*L), where gcd(M, N) is the greatest common divisor of N and M and where k=2 if the modulating signal is a saw-tooth signal and k=4 if the modulating signal is a triangular signal.
Abstract:
A method includes a first analog/digital conversion of an analog signal over m bits, with m less than n, associated with a first full-scale value, and a second analog/digital conversion of the analog signal over m bits associated with a second full-scale value 2n-m times bigger than the first. The two analog/digital conversions are carried out simultaneously and respectively delivering a first intermediate digital word of m bits and a second intermediate digital word of m bits. The method also includes a digital post-processing carried out after the two analog/digital conversions and generating an n-bit digital word starting from at least one of the two intermediate digital words extended to n bits and from at least one threshold digital indication representative of at least one threshold lower than or equal to the first full-scale value.
Abstract:
An embodiment of a circuit includes an input node, a generator, a combiner, a converter, and a filter. The input node is configured to receive an input signal in a first domain, and the generator is configured to generate a periodic signal in the first domain. The combiner is configured to combine the input and periodic signals into a resulting signal in the first domain, and the converter is configured to convert the resulting signal into a converted signal in a second domain. And the filter is configured to remove from the converted signal substantially all of a frequency component of the converted signal having substantially a same frequency as a frequency component of the periodic signal.
Abstract:
According to an embodiment, an analog-to-digital (AD) converter includes a first AD conversion unit, a selector and a second AD conversion unit. The first AD conversion unit performs AD conversion of an analog signal in a first period to generate an upper-bit digital signal. The selector selects not less than one reference voltage based on the upper-bit digital signal to obtain a selected reference voltage group in a voltage range narrower than a full scale. The second AD conversion unit performs AD conversion of the analog signal by using the selected reference voltage group. The first period starts before settling of the analog signal up to an accuracy corresponding to a total resolution of the first AD conversion unit and the second AD conversion unit.
Abstract:
An A/D converter includes a comparator configured to compare an input voltage and a reference signal changing monotonically with respect to time and output a comparison result signal indicating a comparison result, a pulse signal generation circuit configured to generate a pulse signal in accordance with the comparison result signal, a counting unit configured to receive a first clock signal, and to count the first clock signal from a start of changing a level of the reference signal to when a level of the comparison result signal is changed, and a latch unit configured to latch the pulse signal at a timing which is defined by a plurality of clock signals including a second clock signal in phase with the first clock signal and a third clock signal having a different phase from that of the second clock signal.
Abstract:
An A/D conversion circuit in which a counter is made to be capable of performing counting at both edges of a clock, up/down count values can be switched while the up/down count values are held, and the duty of the counting operation is difficult to be distorted even with the both-edge counting, a solid-state image sensor, and a camera system.