Abstract:
The present disclosure is directed to a primary-controlled high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs, and may be compatible with phase-cut dimmers. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
Abstract:
A control unit for a switching converter has an inductor element coupled to an input and a switch element coupled to the inductor element and generates a command signal having a switching period to switch the switch element and determine a first time period in which an inductor current is flowing in the inductor element for storing energy and a second time period in which energy is transferred to a load. An input current is distorted relative to a sinusoid by a distortion factor caused by current ripple on the inductor current. The duration of the first time period is determined based on a comparison between a peak value of the inductor current and a current reference that is a function of an output voltage of said voltage converter. A reference modification stage modifies one of the current reference and sensed value of the inductor current to compensate for distortion introduced by the distortion factor on the input current.
Abstract:
A method controls a power switch and senses a primary current through a transformer primary winding coupled to the power switch and deactivates the switch responsive to the sensed primary current reaching a current sensed reference. A demagnetization mode is initiated responsive to deactivating the power switch. During this mode a first capacitance is charged with a first charging current to generate the current sensed reference. The first charging current is based on a bias signal. A second capacitance is charged with a second charging current to generate the bias signal. The second charging current is based on a compensation signal. A third charging current generates a comparison signal, the third charging current based on the current sensed reference. The compensation signal is based on a difference between the comparison signal and an internal reference and the power switch activated based on a secondary current in a secondary transformer winding.
Abstract:
A control circuit controls a switch of a switching current converter receiving an input quantity, with a transformer having a primary winding and a sensor element generating a sensing signal correlated to a current in the primary winding. The control circuit has a comparator stage configured to compare a reference signal with a comparison signal correlated to the sensing signal and generate an opening signal for the switch. The comparator stage has a comparator element and a delay-compensation circuit. The delay-compensation circuit is configured to generate a compensation signal correlated to the input quantity and to a propagation delay with respect to the opening signal. The comparator element generates the opening signal with an advanced timing correlated to the input quantity and to the propagation delay.
Abstract:
A primary-side controlled high power factor, low total harmonic distortion, quasi resonant converter converts an AC mains power line input to a DC output for powering a load, such as a string of LEDs. The AC mains power line input is supplied to a transformer that is controlled by a power switch. A device for controlling a power transistor of a power stage includes a shaper circuit including a first current generator configured to output a first current responsive to a bias voltage signal and to generate a reference voltage signal based on the first current. A bias circuit includes a second current generator configured to output a second current responsive to a compensation voltage signal and to generate the bias voltage based on the second current. An error detection circuit includes a third current generator configured to output a third current responsive to the reference voltage signal and to generate the compensation voltage signal based on the third current. A driver circuit has a first input configured to receive the reference voltage signal and having an output configured to drive the power transistor.
Abstract:
Described herein is a module for controlling a switching converter, which includes at least one inductor element and one switch element and generates an output electric quantity starting from an input electric quantity. The control module generates a command signal for controlling the switching of the switch element and includes an estimator stage, which generates an estimation signal proportional to the input electric quantity, on the basis of the command signal and of an input signal indicating a time interval in which the inductor element is demagnetized. The control module generates the command signal on the basis of the estimation signal.
Abstract:
The present disclosure is directed to a switching power converter having a power transistor controlled by a controller. The controller includes a multiplier that produces a voltage reference signal. A subtraction circuit subtracts a capacitor signal, which is based on the voltage reference signal, from a sensing signal that is representative of the current flowing through the power transistor. A comparator compares the voltage reference signal to the output of the subtraction circuit, and a driving circuit drives the power transistor based on the comparison resulting in a high power factor and low total harmonic distortion for the converter.
Abstract:
Described herein is a module for controlling a switching converter, which includes at least one inductor element and one switch element and generates an output electric quantity starting from an input electric quantity. The control module generates a command signal for controlling the switching of the switch element and includes an estimator stage, which generates an estimation signal proportional to the input electric quantity, on the basis of the command signal and of an input signal indicating a time interval in which the inductor element is demagnetized. The control module generates the command signal on the basis of the estimation signal.
Abstract:
A control circuit includes: a flip-flop having an output configured to be coupled to a control terminal of a transistor and for producing a first signal; a comparator having an output coupled to an input of the flip-flop, and first and second inputs for receiving first and second voltages, respectively; a transconductance amplifier having an input for receiving a sense voltage indicative of a current flowing through the transistor, and an output coupled to the first input of the comparator; a zero crossing detection (ZCD) circuit having an input configured to be coupled to a first current path terminal of the transistor and to an inductor, where the ZCD circuit is configured to detect a demagnetization time of the inductor and produce a third signal based on the detected demagnetization time; and a reference generator configured to generate the second voltage based on the first and third signals.
Abstract:
An LED lighting system includes switching circuitry adjustably driving a string of LEDs and being controlled by a reference current and an enable signal. A controller generates the reference current and enable signal based upon a PWM signal such that the switching circuitry: sources a first LED current to the string of LEDs that is proportional to a duty cycle of the PWM signal when the duty cycle is greater than a threshold duty cycle to thereby perform analog dimming; and sources a second LED current to the string of LEDs that has a duty cycle proportional to the duty cycle of the PWM signal when the duty cycle of the PWM signal is less than the threshold duty cycle, such that an average LED current delivered to the string of LEDs is proportional to the duty cycle of the PWM signal to thereby perform digital dimming.