Abstract:
A power transmitter includes: a first switch coupled between a first node and a reference voltage node; a second switch configured to be coupled between a power supply and the first node; a coil and a capacitor coupled in series between the first node and the reference voltage node; a first sample-and-hold (S&H) circuit having an input coupled to the first node; and a timing control circuit configured to generate a first control signal, a second control signal, and a third control signal that have a same frequency, where the first control signal is configured to turn ON and OFF the first switch alternately, the second control signal is configured to turn ON and OFF the second switch alternately, and where the third control signal determines a sampling time of the first S&H circuit and has a first pre-determined delay from a first edge of the first control signal.
Abstract:
A power transmitter includes: a first switch coupled between a first node and a reference voltage node; a second switch configured to be coupled between a power supply and the first node; a coil and a capacitor coupled in series between the first node and the reference voltage node; a first sample-and-hold (S&H) circuit having an input coupled to the first node; and a timing control circuit configured to generate a first control signal, a second control signal, and a third control signal that have a same frequency, where the first control signal is configured to turn ON and OFF the first switch alternately, the second control signal is configured to turn ON and OFF the second switch alternately, and where the third control signal determines a sampling time of the first S&H circuit and has a first pre-determined delay from a first edge of the first control signal.
Abstract:
A wireless-power-system includes a bridge-rectifier having first and second inputs coupled to first and second terminals of a coil, and an output coupled to a rectified voltage node. An excitation circuit is coupled to the first input. A protection circuit has a first connection node capacitively coupled to the first terminal. The protection circuit, in Q-factor measurement mode, clamps the first connection node when the first input is coupled to ground, and connects the first connection node to the rectified voltage node when the first input is coupled to a supply voltage. The protection circuit, in wireless power mode, is acting as one leg of the rectifier. A pass gate circuit is coupled between the first connection node and a sense node, and a sensing circuit is coupled to the sense node and measures a Q-factor of the wireless power system when the protection circuit is in Q-factor measurement mode.
Abstract:
A data demodulating circuit includes a sensing circuit sensing a power signal applied to a coil at first and second times, and outputting an analog value representing a difference in voltage of the power signal at the first and second times. An analog-to-digital converter digitizes the analog value output by the analog voltage differential sensing circuit to produce a digital code. A compensation circuit, over a period of time, compares a present value of the digital code to a first value of the digital code during the period, and subtracts a given value from the present value of the digital code if the present value is greater than the first value but add the given value to the present value of the digital code if the present value is less than the first value. An accumulator accumulates output of the compensation circuit, and a filter filters output of the accumulator.
Abstract:
A power transmission system includes at least one wireless power transmission circuit. A first wireless power reception circuit includes a first circuit comparing a reference voltage to a feedback voltage representing an output voltage produced from received power and delivered to an output node, and adjusting a first control terminal of a device supplying a first rectified voltage until the feedback and reference voltages are equal. A second wireless power reception circuit includes a second circuit modifying a control terminal of a device sourcing a second rectified current produced from received power to the output node, based upon comparison of a reference current to a current representative of the second rectified current. Control circuitry adjusts the reference current until a first rectified voltage generated by the first wireless power reception circuit and a second rectified voltage generated by the second wireless power reception circuit are equal.
Abstract:
Capacitance sensing circuits and methods are provided. The capacitance sensing circuit includes a capacitance-to-voltage converter configured to receive a signal from a capacitance to be sensed and to provide an output signal representative of the capacitance, an output chopper configured to convert the output signal of the capacitance-to-voltage converter to a sensed voltage representative of the capacitance to be sensed, an analog accumulator configured to accumulate sensed voltages during an accumulation period of NA sensing cycles and to provide an accumulated analog value, an amplifier configured to amplify the accumulated analog value, and an analog-to-digital converter configured to convert the amplified accumulated analog value to a digital value representative of the capacitance to be sensed. The analog accumulator may include a low pass filter having a frequency response to filter wideband noise.
Abstract:
Accumulators that operate to fully or partially remove noise from a signal, including removing noise inserted into the signal by the accumulator itself. In some embodiments, an accumulator may be operated in a sampling phase and a transfer phase each time the accumulator samples an input signal. In some such embodiments, an op-amp of an accumulation circuit of the accumulator may be auto-zeroed during some or all of the sampling phases of an accumulation period. In some embodiments in which the op-amp is auto-zeroed during some or all of the sampling phases, the accumulation circuit may include a holding capacitor that, during an auto-zeroing process, holds a value output by the op-amp during a prior transfer phase. Including such a holding capacitor in an accumulator may reduce a voltage that the op-amp output rises following the auto-zero process, which may reduce a bandwidth and noise of the accumulation circuit.
Abstract:
Capacitance sensing circuits and methods are provided. The capacitance sensing circuit includes a capacitance-to-voltage converter configured to receive a signal from a capacitance to be sensed and to provide an output signal representative of the capacitance, an output chopper configured to convert the output signal of the capacitance-to-voltage converter to a sensed voltage representative of the capacitance to be sensed, an analog accumulator configured to accumulate sensed voltages during an accumulation period of NA sensing cycles and to provide an accumulated analog value, an amplifier configured to amplify the accumulated analog value, and an analog-to-digital converter configured to convert the amplified accumulated analog value to a digital value representative of the capacitance to be sensed. The analog accumulator may include a low pass filter having a frequency response to filter wideband noise.
Abstract:
A power transmitter includes: a first switch coupled between a first node and a reference voltage node; a second switch configured to be coupled between a power supply and the first node; a coil and a capacitor coupled in series between the first node and the reference voltage node; a first sample-and-hold (S&H) circuit having an input coupled to the first node; and a timing control circuit configured to generate a first control signal, a second control signal, and a third control signal that have a same frequency, where the first control signal is configured to turn ON and OFF the first switch alternately, the second control signal is configured to turn ON and OFF the second switch alternately, and where the third control signal determines a sampling time of the first S&H circuit and has a first pre-determined delay from a first edge of the first control signal.
Abstract:
A receiver circuit includes a rectifier operable in full-, half-synchronous and asynchronous modes. A measurement circuit, with method, provides for real-time power measurement within the rectifier. The measurements are made based on the average output current from the rectifier delivered to the load and measurements sampled over time of the instantaneous voltage at each input/output node of the rectifier. Equivalent resistance in the rectifier is determined from the measurements and power dissipation calculated from the determined equivalent resistance and the average output current. The instantaneous voltages are synchronously captured through high-voltage AC coupling in order to detect the voltage drop across each element of the rectifier. The sensed voltages are amplified in the low voltage domain and converted by a high-speed analog-to-digital converter in order to produce data useful in computing equivalent resistance values. From these values, power dissipation within the rectifier is calculated and real-time equivalent resistance is available.