Abstract:
A consumable material for use in an extrusion-based digital manufacturing system, the consumable material comprising a length and a cross-sectional profile of at least a portion of the length that is axially asymmetric. The cross-sectional profile is configured to provide a response time with a non-cylindrical liquefier of the extrusion-based digital manufacturing system that is faster than a response time achievable with a cylindrical filament in a cylindrical liquefier for a same thermally limited, maximum volumetric flow rate.
Abstract:
An additive manufacturing system includes a build chamber with at least first and second side walls and top and bottom walls. A central deformable, thermal insulator has a first edge and a second edge, where a print head carriage is movably retained within the central deformable thermal insulator and is configured to move print heads within a build plane of the build chamber under control of a gantry. The system includes first and second dynamic thermal barriers each having a length between a proximal edge and a distal edge wherein the proximal edge is configured to be secured to the central deformable insulator and a distal edge is configured to be movably retained to the build chamber such that as the print head carriage moves laterally across the build plane, each dynamic thermal barrier moves with the central deformable insulator and print head carriage, and retains its length.
Abstract:
An additive manufacturing system for printing a 3D part includes a build platen and a starter piece supported by the build platen. The starter piece comprises a build surface having a plurality of channels and wherein the build surface has a void fraction due to an open surface area of the channels ranging from about 0.5 to about 0.95. The print head includes a nozzle configured to extrude a molten material in a print plane and wherein the extruded material is configured fill a space between the build surface and the print plane and at least partially fill a portion of the plurality of channels such that a base layer of material is printed having a substantially planar surface upon which a 3D part can be printed along a print axis.
Abstract:
A liquefier assembly for use in an additive manufacturing system, which includes a rigid member having a gap, a liquefier tube operably disposed in the gap, one or more heater assemblies disposed in the gap in contact with the liquefier tube, and configured to heat the liquefier tube in a zone-by-zone manner, preferably one or more thermal resistors disposed in the gap between the rigid member and the heater assemblies, and preferably one or more sensors configured to operably measure pressure within the liquefier tube. The one or more heater assemblies may be operated to provide dynamic heat flow control.
Abstract:
A support structure removal system comprising a vessel and a second component. The vessel comprises a vessel body, a porous floor configured to retain a three-dimensional part, and an impeller rotatably mounted below the porous floor. The second component comprises a surface configured to operably receive the vessel, and a rotation-inducing assembly located below the surface, where the rotation-inducing assembly is configured to rotate the impeller with magnetic fields when the vessel is received on the surface of the second component to agitate and direct flows of an aqueous fluid through the porous floor.
Abstract:
An additive manufacturing system for printing three-dimensional (3D) parts includes a print foundation, a print head, a drive mechanism, and a supporting surface that creates an air bearing for parts under construction as they move through the system. The print head is configured to print a 3D part onto the print foundation in a layer-by-layer manner in a vertical print plane. The drive mechanism is configured to index the print foundation substantially along a horizontal print axis during printing of the 3D part. The support surface is provided by a table extending along the horizontal axis. The table has a plurality of air jets forming an air platen, which generates the air bearing for supporting the 3D part as it is incremented along the print axis.
Abstract:
A three-dimensional part printed using an additive manufacturing technique, which includes sets of printed cell layers, each defining an array of hollow cells with wall segments, and sets of printed transition layers, each being disposed between adjacent printed cell layers, where the sets of printed transition layers each comprise sloped walls that diverge from a first portion of the wall segments and that converge towards a second portion of the wall segments to interconnect the hollow cells of adjacent printed cell layers, and where the sloped walls of adjacent printed transition layers have printing orientations that are rotated from each other in a build plane.
Abstract:
An additive manufacturing system for printing three-dimensional parts, the system comprising a heatable chamber with a port, a print foundation, a print head configured to print a three-dimensional part onto the print foundation in a layer-by-layer manner along a printing axis, and a drive mechanism configured to index the print foundation along the printing axis such that, while the print head prints the three-dimensional part, the print foundation and at least a portion of the three-dimensional part pass through the port and out of the heated chamber.
Abstract:
A consumable assembly comprising a container portion configured to retain a supply of filament, a guide tube connected to the container portion, and a pump portion connected to the guide tube.
Abstract:
An additive manufacturing method and system for printing a three-dimensional part, which includes generating a magnetic field in a build chamber, printing layers of the three-dimensional part in the build chamber, and transferring layers of a magnetic support media to the build chamber in coordination with the printing of the layers of the three-dimensional part. The method also includes magnetically coupling the transferred layers of the magnetic support media in the build chamber with the generated magnetic field to produce a self-supporting bed of the magnetically-coupled media.