Abstract:
An electrode material includes an aggregate which is formed by aggregating electrode active material particles having a carbonaceous film forced on the surface thereof, in which a volume density of the aggregate is 50% by volume or more and 80% by volume or less of the volume density of a solid body which has the same external appearance as the aggregate, a coverage ratio of the carbonaceous film with respect to the surface of the electrode active material particles is 80% or more, and an average thickness of the carbonaceous film is 1.0 nm or more and 7.0 nm or less.
Abstract:
An electrode material having excellent electron conductivity, load characteristics, and cycle characteristics is provided. The electrode material includes an electrode active material represented by LixFeyAzBO4 (here, A represents either or both selected from a group consisting of Mn and Co, B represents one or more selected from a group consisting of P, Si, and S, 0≦x
Abstract translation:提供了具有优异的电子传导性,负载特性和循环特性的电极材料。 电极材料包括由LixFeyAzBO4表示的电极活性物质(这里,A表示选自Mn和Co中的任一种或两者,B表示选自P,Si和S中的一种或多种,0&lt; nlE; x <4,0
Abstract:
An electrode-active material includes sulfur or a sulfur compound in particles represented by LixAyDzPO4 (wherein A represents one or two or more elements selected from the group consisting of Co, Mn, Ni, Fe, Cu, and Cr; D represents one or two or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, and rare earth elements; 0
Abstract:
An electrode material of the invention includes an agglomerate formed by agglomerating carbonaceous coated electrode active material particles obtained by forming a carbonaceous coat on surfaces of electrode active material particles at a coating rate of 80% or more, and the carbonaceous coated electrode active material particles include first carbonaceous coated electrode active material particles on which a carbonaceous coat having a film thickness in a range of 0.1 nm to 3.0 nm and an average film thickness in a range of 1.0 nm to 2.0 nm is formed and second carbonaceous coated electrode active material particles on which a carbonaceous coat having a film thickness in a range of 1.0 nm to 10.0 nm and an average film thickness in a range of more than 2.0 nm to 7.0 nm is formed.
Abstract:
A cathode material fora lithium-ion secondary battery which includes granulated bodies in which primary particles are aggregated, wherein an average particle diameter of the granulated bodies is 4.50 μm or more and 6.20 μm or less, and particle diameters of 90% or more of the granulated bodies are 1.00 μm or more and 11.00 μm or less, wherein particle diameters of the granulated bodies are evaluated such that 300 granulated bodies are randomly selected from a view of the granulated bodies using a scanning electron microscope, a plurality of diameters of each of the 300 granulated bodies that pass through a central point thereof are evaluated, and a maximum diameter selected from the plurality of diameters is considered as a particle diameter of each of granulated bodies.
Abstract:
A cathode material is provided which comprises secondary particles of cathode active material particles including central particles of LixFeyMzPO4 and a carbonaceous film which coats the central particles, wherein a particle size distribution thereof has maximum values of a relative particle amount on both fine and coarse particle sides. A particle diameter with the maximum relative particle amount on the fine particle side is in a range A of 0.70 μm to 2.00 μm, and a particle diameter with the maximum relative particle amount on the coarse particle side is in a range B of 7.00 μm to 15.00 μm. A difference between maximum values of a relative particle amount is 2.00% to 6.00%.
Abstract:
A cathode material for a lithium-ion secondary battery of the present invention is active material particles including central particles represented by LixAyMzPO4 and a carbonaceous film that coats surfaces of the central particles, in which a median diameter is 0.50 μm or more and 0.80 μm or less, and a chromaticity b* in an L*a*b* color space is 1.9 or more and 2.3 or less.
Abstract:
An electrode material tor a lithium-ion rechargeable battery of the present invention includes inorganic particles represented by General Formula LiFexMn1-x-yMyPO4 (0.05≦x≦1.0, 0≦y≦0.14; here, M represents at least one element selected from Mg, Ca, Co, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, and rare earth elements) and a carbonaceous film coating surfaces of the inorganic particles, and at least one peak of a micropore diameter distribution is present in a range of 0.4 nm to 5.0 nm. An electrode for a lithium-ion rechargeable battery of the present invention includes the electrode material for a lithium-ion rechargeable battery of the present invention. A lithium-ion rechargeable battery of the present invention includes a cathode, an anode, and a non-aqueous electrolyte, in which the electrode for a lithium-ion rechargeable battery of the present invention is used as the cathode.
Abstract:
Provided are an electrode material for a lithium-ion rechargeable battery including core particles of an active material and a carbonaceous film, in which a powder resistance is 150 Ω·cm or less, and a lithium-ion rechargeable battery produced using the electrode material and a lithium metal exhibits a difference between a sum of a charge capacity with an upper limit voltage of 4.2 V and the lithium-ion rechargeable battery charged at a constant current and a charge capacity with the lithium-ion rechargeable battery charged at a constant voltage for seven days at 4.2 V after the constant current charging and a discharge capacity with the lithium-ion rechargeable battery discharged at a constant current to 2 V after the constant voltage charging reaches 25 mAh/g or less, a method for manufacturing the electrode material, an electrode including the electrode material, and a lithium-ion rechargeable battery including the electrode as a cathode.
Abstract:
A positive electrode material for lithium ion secondary batteries includes central particles composed of LiFexMn1-x-yMyPO4 (0.05≦x≦1.0, 0≦y≦0.14, wherein M represents at least one element selected from Mg, Ca, Co, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, and rare earth elements), and a carbonaceous film that covers surfaces of the central particles, in which a specific magnetization is 0.70 emu/g or less, and an amount of water detected by a Karl Fischer titration method (coulometric titration method) in a temperature range of 100° C. or higher and 250° C. or lower is 8,000 ppm or less.