摘要:
A clamping device includes an oblique device and a unidirectional load control plate disposed on the outside of the fuel cell stack, not on the inside of the fuel cell stack. The device can automatically compensating the surface pressure in the fuel cell stack to be maintained constant, and provide a large clamping load with a small force using the load of the fuel cell stack.
摘要:
The present invention provides an apparatus and method for manufacturing a metal separator for a fuel cell, which can manufacture large-sized metal separators in large quantities using metal plates such as stainless steel by thermoplastic deformation using an incremental and synchronized rubber molding process.
摘要:
The present invention provides a metal separator for a fuel cell, which is formed by stamping molding a first metal thin plate and a second metal thin plate, the metal separator comprising: at least one cooling flow field enclosed by inner surfaces of the first and second metal thin plates; first and second main flow fields enclosed by outer surfaces of the first and second thin plates, respectively; and first and second auxiliary flow fields formed on a top surface of the first main flow field and a bottom surface of the second main flow field, respectively.
摘要:
The present invention provides a fuel cell separator, in which a vortex generating structure is formed on the surface of a channel of the separator to induce a vortex of fluid (i.e., hydrogen and air) flowing through the channel, thus facilitating the supply of reactant gases and the removal of water droplets from a gas diffusion layer (GDL).
摘要:
A clamping device includes an oblique device and a unidirectional load control plate disposed on the outside of the fuel cell stack, not on the inside of the fuel cell stack. The device can automatically compensating the surface pressure in the fuel cell stack to be maintained constant, and provide a large clamping load with a small force using the load of the fuel cell stack.
摘要:
The present invention provides a gasket for reducing stress concentration in a fuel cell stack, which prevents damage or deformation of a separator and further prevents a position shift of the gasket by reducing stress concentration formed at a specific region by deformation of the gasket due to a compression force.Accordingly, the present invention provides a gasket including a T-shaped or cross-shaped gasket joint to form hydrogen, air and coolant manifolds, and the gasket joint has a structure in which two joint branches forming an angle of 180° in the opposite direction to each other are joined at one point with a particular angles so as to reduce stress concentration formed due to compression force by deformation of the gasket.
摘要:
Disclosed is a structure for improving a laminating efficiency of a metal-separator for a fuel cell stack, the metal-separator comprising an embossed structure that has an indentation and a projection alternately formed along at least one edge thereof so as to enable a plurality of the metal-separators to be stably laminated in a honeycomb shape.
摘要:
Disclosed is a gasket for reducing stress concentration in a fuel cell stack, which prevents damage or deformation of a separator and further prevents a position shift of the gasket by reducing stress concentration formed at a specific region by deformation of the gasket due to a compression force. In particular, the gasket includes a T-shaped or cross-shaped gasket joint to form hydrogen, air and coolant manifolds, and the gasket joint has a structure in which two joint branches forming an angle of 180° in the opposite direction to each other are joined at one point with a particular angles which reduce stress concentration formed due to compression force by deformation of the gasket.
摘要:
The present invention provides a fuel cell separator and a method for surface treatment of the same, in which ionized nanoparticles are attached to the surface of a separator to form fine projections such that the surface of the separator exhibits superhydrophobicity. For this purpose, the present invention provides a method for surface treatment of a fuel cell separator which provides nanoparticles for forming fine projections on the surface of the separator to a discharge electrode and ionizes the nanoparticles by an arc discharge generated in the discharge electrode. The ionized nanoparticles are then attached to the surface of the separator by an electric field generated by applying a high voltage between the separator and the discharge electrode, thereby forming fine projections for imparting superhydrophobicity.
摘要:
The present invention provides an apparatus and method for manufacturing a metal separator for a fuel cell, which can manufacture large-sized metal separators in large quantities using metal plates such as stainless steel by thermoplastic deformation using an incremental and synchronized rubber molding process.