Abstract:
A display device includes a display panel having a display area and a non-display area, signal wires disposed in the display area, connection wires disposed in the display area and electrically connected to the signal wires, and touch electrodes disposed on the connection wires. The connection wires include diagonal portions extending in a diagonal direction, and first protrusion patterns protruding from the diagonal portions of the connection wires. Parts of the first protrusion patterns overlap the touch electrodes.
Abstract:
Embodiments of the present disclosure relates to a display device. According to an embodiment of the disclosure, a display device includes a substrate including a first display region and a second display region surrounding the first display region, a first pixel disposed in the first display region, a second pixel disposed in the second display region, and scan stages which are disposed in the second display region and apply scan signals to the first pixel and the second pixel. The first pixel includes a first pixel driver including a first pixel transistor and a first pixel light-emitting device connected to the first pixel driver. The second pixel includes a second pixel driver including a second pixel transistor and a second pixel light-emitting device connected to the second pixel driver. The second pixel driver is disposed between scan stages adjacent to each other along a first direction.
Abstract:
A display device comprises a substrate, a semiconductor layer thereon, a first insulating layer on the semiconductor layer, a first conductive layer on the first insulating layer and including a first electrode pattern, a second insulating layer on the first insulating layer and including first and second conductive patterns, a third insulating layer on the second conductive layer, and a display element layer on the third insulating layer and including a first pixel electrode connected to the first conductive pattern through a first via hole, a second pixel electrode connected to the second conductive pattern through a second via hole, and a micro light-emitting element between the pixel electrodes, the first conductive pattern contacting the semiconductor layer through a first contact hole and the first electrode pattern through a second contact hole, and the second conductive pattern overlapping the first electrode pattern to form a first capacitor therewith.
Abstract:
A method of manufacturing a display device, the method including providing a substrate, forming a first electrode, a second electrode spaced from the first electrode and in a same plane as the first electrode, a first alignment line connected to the first electrode, and a second alignment line connected to the second electrode on the substrate, self-aligning the plurality of light emitting elements by providing a solution containing a plurality of light emitting elements on the substrate, removing the first alignment line and the second alignment line from the substrate on which the plurality of light emitting elements are self-aligned, forming a first contact electrode electrically connecting one end of each light emitting element to the first electrode, and forming a second contact electrode electrically connecting an other end of each light emitting element to the second electrode.
Abstract:
A display device includes: a substrate; a plurality of pixels provided in a pixel region of the substrate; a scan line and a data line, connected to each of the plurality of pixels; a first transistor connected to the scan line and the data line and a second transistor connected to the first transistor; a light emitting element connected to the transistor; a first blocking layer disposed between the substrate and the first transistor, the first blocking layer being electrically connected to the first transistor; and a second blocking layer disposed between the substrate and the second transistor, the second blocking layer being electrically connected to the second transistor, wherein the first blocking layer is connected to a gate electrode of the first transistor, and the second blocking layer is connected to any one of source and drain electrodes of the second transistor.
Abstract:
A display device includes a substrate including a first display region, a second display region having an area smaller than that of the first display region, a third display region having an area smaller than that of the first display region, and a non-display region, a plurality of pixels provided in the first to third display regions, a power line which is connected to each of the plurality of pixels and applies a first power voltage to the plurality of pixels, and a fan-out line provided in the non-display region, the fan-out line applying a data signal to the plurality of pixels, where the power line includes an additional power line, a first power line, and disposed on the additional power line, and a second power line disposed on the first power line.
Abstract:
A display device includes: a substrate; a plurality of pixels provided in a pixel region of the substrate; a scan line and a data line, connected to each of the plurality of pixels; a first transistor connected to the scan line and the data line and a second transistor connected to the first transistor; a light emitting element connected to the transistor; a first blocking layer disposed between the substrate and the first transistor, the first blocking layer being electrically connected to the first transistor; and a second blocking layer disposed between the substrate and the second transistor, the second blocking layer being electrically connected to the second transistor, wherein the first blocking layer is connected to a gate electrode of the first transistor, and the second blocking layer is connected to any one of source and drain electrodes of the second transistor.
Abstract:
A liquid crystal display (LCD) according to an exemplary embodiment of the present invention includes: a lower panel having a pixel electrode including at least one unit pixel electrode; an upper panel having a common electrode including at least one unit common electrode; and a liquid crystal layer interposed between the lower and upper panels. The unit pixel electrode includes an at least approximately diagonally oriented and parallelogram-shaped center electrode, and further includes a plurality of branches extending from the center electrode, and the common electrode includes an opening extending in a first direction corresponding to a direction of bending of the LCD.
Abstract:
A liquid crystal display includes a mother substrate with a plurality of unit substrate regions, a first voltage supplying wire and a second voltage supplying wire, each of the first and second voltage supplying wires being between neighboring unit substrate regions, a first cell pad and a second cell pad on each unit substrate region, a first connection bridge connecting the first voltage supplying wire, the first cell pad, and the second cell pad, and a second connection bridge connecting the second voltage supplying wire, the first cell pad, and the second cell pad, wherein each of the unit substrate regions includes a thin film transistor, a pixel electrode connected to the thin film transistor, liquid crystal in a microcavity on the pixel electrode, a common electrode on the liquid crystal, and an overcoat covering the liquid crystal and the common electrode.
Abstract:
A light emitting display device includes a pixel circuit unit, a data distribution unit, a plurality of signal generating units, a unit light emitting diode, and a dummy opening. The pixel circuit unit is configured to generate an output current. The data distribution unit is configured to apply a data voltage to the pixel circuit unit through a data line. The plurality of signal generating units are respectively configured to apply a scan signal and a light emission control signal to the pixel circuit unit through a plurality of signal lines. The unit light emitting diode is configured to receive the output current of the pixel circuit unit and is attached to the pixel circuit unit. The dummy opening is formed in the region where the pixel circuit unit, the data distribution unit, and a plurality of signal generating units are not positioned.