Abstract:
Provided is an organic light-emitting display apparatus. The organic light-emitting display apparatus including: pixels arranged in a display region of a substrate and at intersections between scanning lines and data lines; a first initialization main line arranged along a first side of the display region of the substrate; a second initialization main line arranged along a second side of the display region of the substrate; an initialization power line electrically connected to the pixels and to the first initialization main line and the second initialization main line; and a first electrical connection portion comprising a doped semiconductor layer of which a first portion is connected to the first initialization main line and a second portion is connected to the initialization power line.
Abstract:
In an aspect, an organic light-emitting display apparatus including: a substrate; a thin film transistor (TFT) formed on the substrate and comprising an active layer, a gate electrode, a source electrode, and a drain electrode; a first insulating layer formed on the TFT; a pixel electrode; a second insulating layer formed on the first insulating layer; and an opposite electrode formed on the intermediate layer is provided.
Abstract:
A thin film transistor, a method of manufacturing the same, and a display device including the same, the thin film transistor including a substrate; a polysilicon semiconductor layer on the substrate; and a metal pattern between the semiconductor layer and the substrate, the metal pattern being insulated from the semiconductor layer, wherein the polysilicon of the semiconductor layer includes a grain boundary parallel to a crystallization growing direction, and a surface roughness of the polysilicon semiconductor layer defined by a distance between a lowest peak and a highest peak in a surface thereof is less than about 15 nm.
Abstract:
A flat panel display device includes a pixel circuit provided on a substrate, a pixel wiring, an inspection pad connected to the pixel circuit through the pixel wiring, a main wiring separated from the inspection pad by a gap, and a common electrode covering substantially the entire substrate and electrically connecting the inspection pad to the main wiring.
Abstract:
An organic light-emitting display apparatus in which electrical communication between an opposing electrode and an electrode power supply line can be more easily checked without adding an additional process in a manufacturing process, and a method of manufacturing the organic light-emitting display apparatus, is provided. The organic light-emitting display apparatus includes thin film transistors and pixel electrodes electrically connected to the thin film transistors in an active area of a substrate, an opposing electrode in the active area and a dead area of the substrate, an electrode power supply line in the dead area of the substrate and having a surface contacting the opposing electrode and configured to supply power to the opposing electrode, and a test line in the dead area of the substrate separated from the electrode power supply line and contacting the opposing electrode.
Abstract:
An organic light emitting display device including: a substrate; an active layer formed on the substrate; a first insulation film disposed on the substrate to cover the active layer; a transistor including a gate electrode disposed at a location corresponding to the active layer with the first insulation film in between, and source and drain electrodes electrically connected to the active layer; a first electrode layer disposed on the substrate and electrically connected to any one of the source and drain electrodes of the transistor; a second electrode layer formed on the first electrode layer; an organic light emitting layer disposed between the first electrode layer and the second electrode layer; and a light reflecting unit covering a side and a part of top of the first electrode layer.
Abstract:
Disclosed is an organic light emitting diode display including: a pixel unit including an organic light emitting diode for displaying an image; and a periphery surrounding the pixel unit. The periphery includes a gate common voltage line formed on the substrate and receiving a common voltage from an external circuit, an interlayer insulating layer covering the gate common voltage line and including a common voltage contact hole for exposing a part of the gate common voltage line, a data common voltage line formed on the interlayer insulating layer and contacting the gate common voltage line through the common voltage contact hole, and a plurality of protrusions provided in the common voltage contact hole and formed on the substrate.
Abstract:
An organic light-emitting diode (OLED) display apparatus including a substrate, an insulation layer on the substrate, and an align mark formed of an insulation material, wherein an upper surface of the insulation layer contacts a lower surface of the align mark.
Abstract:
An organic light-emitting diode display is disclosed. In one aspect, the OLED display includes a first connection line extending in a first direction and electrically connected to an OLED configured to emit light, a repair line extending in a second direction crossing the first direction, and an insulating layer formed between the first connection line and the repair line and configured to electrically insulate the first connection line from the repair line. The repair line includes a joining portion extending from the repair line in the first direction and at least partially overlapping a portion of the first connection line.
Abstract:
An organic light emitting display device including a thin film transistor including an active layer, a gate electrode, a source electrode, a drain electrode, a source electrode top layer on the source electrode and a drain electrode top layer on the drain electrode, a first insulating layer between the active layer and the gate electrode, and a second insulating layer between the gate electrode and the source and drain electrodes; a pad electrode including a first pad layer at the same level as the source electrode and a second pad layer on the first pad layer and at the same level as the source and drain electrode top layers; a third insulating layer covering end portions of the source, drain, and pad electrodes and including an organic insulating layer; and a pixel electrode in an opening formed in the third insulating layer and including a semi-transmissive metal layer.