Abstract:
A display device is provided. The display device includes a display panel generating an image, a phase retarder disposed on the display panel, a first polarizer disposed on the phase retarder, a liquid crystal lens disposed on the first polarizer, and a second polarizer disposed on the liquid crystal lens. The phase retarder has a first optical axis and the first polarizer has a second optical axis crossing the first optical axis. The second polarizer has a third optical axis substantially in parallel to the second optical axis.
Abstract:
A liquid crystal display panel and a method for manufacturing the same are provided. The liquid crystal display panel includes a lens area and a peripheral area. The lens area includes a plurality of liquid crystal lenses. Each of the plurality of liquid crystal lenses includes a plurality of electrodes. The peripheral area surrounds the lens area. The peripheral area includes a first bus line layer and a second bus line layer facing each other in a first direction. The first and second bus line layers include first bus lines and second bus lines, respectively. The first and second bus lines are electrically connected to each of the plurality of electrodes through one end of each electrode.
Abstract:
A display device includes a display panel, a first polarizer, a liquid crystal lens, a first quarter-wave plate, and a second quarter-wave plate. The display panel displays an image. The first polarizer disposed on the display panel reflects a first light having a polarization direction parallel to a reflection axis of the first polarizer. The liquid crystal lens includes liquid crystal molecules and changes a phase of the first light or a second light according to a driving signal applied to the liquid crystal lens. The second and first lights travel in opposite directions with respect to each other. The first quarter-wave plate is disposed between the first polarizer and the liquid crystal lens. The second quarter-wave plate is disposed between the liquid crystal lens and a second polarizer. The display device operates in a mirror mode, a three-dimensional mode, and a two-dimensional mode according to the driving signal.
Abstract:
An optical modulation device or an optical device including the same includes: a first plate and a second plate facing the first plate; and a liquid crystal layer between the first plate and the second plate and including a plurality of liquid crystal molecules, wherein the first plate includes a plurality of first electrodes and a first aligner, the second plate includes at least one second electrode and a second aligner, and an alignment direction of the first aligner is substantially parallel to an alignment direction of the second aligner and wherein portions of the first plate, the second plate, and the liquid crystal layer between the first and second plates are individual units.
Abstract:
An optical modulation device or an optical device including the same includes: a first plate and a second plate facing the first plate; and a liquid crystal layer between the first plate and the second plate and including a plurality of liquid crystal molecules, wherein the first plate includes a plurality of first electrodes and a first aligner, the second plate includes at least one second electrode and a second aligner, and an alignment direction of the first aligner is substantially parallel to an alignment direction of the second aligner and wherein portions of the first plate, the second plate, and the liquid crystal layer between the first and second plates are individual units.
Abstract:
A three-dimensional (“3D”) image display device includes a display panel, and a liquid crystal lens part disposed on the display panel and which selectively provides a two-dimensional (“2D”) image and a 3D stereoscopic image, where the liquid crystal lens part includes: a lower substrate including a plurality of linear electrodes which are disposed in different layers; an upper substrate including a plate electrode; and a lens liquid crystal layer disposed between the lower substrate and the upper substrate, where the linear electrodes in the different layers are alternately arranged in a unit zone of the liquid crystal lens part, and where two adjacent linear electrodes of the linear electrodes are spaced apart from each other when viewed from a top view.
Abstract:
An image display device includes a display panel displaying an image, and a diffractive element formed to operate in a 2D mode or a 3D mode so that the image of the display panel is perceived as a 2D image or a 3D image after passing through the diffractive element. In the image display device, the diffractive element includes a first substrate and a second substrate facing each other, a first electrode layer formed on the first substrate that includes a plurality of zones, a second electrode layer formed on the second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. Further, when the diffractive element operates in the 3D mode, a common voltage is applied to the second electrode layer, and polarity of voltages applied to the first electrode layer with respect to the common voltage is inverted every zone.
Abstract:
A three-dimensional (“3D”) image display device includes a display panel, and a liquid crystal lens part disposed on the display panel and which selectively provides a two-dimensional (“2D”) image and a 3D stereoscopic image, where the liquid crystal lens part includes: a lower substrate including a plurality of linear electrodes which are disposed in different layers; an upper substrate including a plate electrode; and a lens liquid crystal layer disposed between the lower substrate and the upper substrate, where the linear electrodes in the different layers are alternately arranged in a unit zone of the liquid crystal lens part, and where two adjacent linear electrodes of the linear electrodes are spaced apart from each other when viewed from a top view.
Abstract:
A 3D display device is provided. The 3D display device includes a display panel and a liquid crystal lens panel. The display panel operates in one of a 2D mode for displaying a 2D image, a 3D mode for displaying a 3D image, and a coincident mode for displaying the 2D image and the 3D image. The liquid crystal lens panel is disposed on the display panel. The liquid crystal lens panel is configured to refract the 3D image through a third region of the liquid crystal lens panel and to transmit the 2D image without refracting the 2D image when the display panel operates in the coincident mode.
Abstract:
A three dimensional image display includes a display panel and a liquid crystal lens positioned on the top of the display panel. The liquid crystal lens comprises a lower substrate, an upper substrate, a lens, and an electrode voltage applying IC. The lower substrate includes a first electrode. The upper substrate includes a second electrode. The upper substrate faces the lower substrate. The lens liquid crystal layer is positioned between the lower substrate and the upper substrate. The electrode voltage applying IC is configured to form a plurality of zones on the first electrode of the lower substrate by sequentially applying first voltage and second voltage to the first electrode. The first voltage includes an overshoot voltage level. The second voltage has an inverted polarity of the first voltage.