Abstract:
A liquid crystal display according to the present inventive concept includes: a substrate; a gate line and a data line crossing each other formed on the substrate; a thin film transistor connected to the gate line and the data line; a pixel electrode connected to the thin film transistor and having a slit at a center; a liquid crystal layer filling a plurality of microcavities positioned on the pixel electrode; a common electrode positioned on the liquid crystal layer; and a roof layer formed on the common electrode and having an oblique portion formed to be inclined at both outer sides of the microcavities.
Abstract:
Provided is a liquid crystal display.The liquid crystal display comprises a substrate having a plurality of pixel areas; a first electrode on the substrate in each of the pixel areas; a fine space layer positioned on the first electrode; a roof layer defining the fine space layer between the substrate and the roof layer and including a liquid crystal injection port; a second electrode on a bottom surface of the roof layer; and a supporter on the liquid crystal injection port and divided into a plurality of portions to define a filling space.
Abstract:
A liquid crystal display device includes: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected with the thin film transistor; and a roof layer disposed to face the pixel electrode, wherein a plurality of microcavities having respective liquid crystal injection holes are formed between the pixel electrode and the roof layer, and the microcavities are filled with electrically orientatable liquid crystal molecules, wherein a light blocking layer disposed adjacent to the injection holes is formed and covering the thin film transistor, wherein the light blocking layer is covered by a passivation layer.
Abstract:
A display device includes a substrate, a thin film transistor disposed on the substrate, and a pixel electrode electrically connected to the thin film transistor. The display device further includes a roof layer overlapping the pixel electrode with a cavity being positioned between the roof layer and the pixel electrode, the cavity having an opening. The display device further includes an alignment layer and a liquid crystal layer disposed inside the cavity. The display device further includes a plurality of bead members disposed at the opening and including a first bead member, a first portion of the first bead member being disposed inside the cavity, a second portion of the first bead member being disposed outside the cavity. The display device further includes an encapsulation layer overlapping the roof layer and overlapping the plurality of bead members.
Abstract:
The liquid crystal display including a substrate; a thin film transistor disposed on the substrate; a field generating electrode in electrical communication with the thin film transistor; and an alignment layer disposed on the field generating electrode, wherein the alignment layer includes a self-assembled monolayer (“SAM”) derived from at least a first precursor compound and a second precursor compound, and wherein the first and second precursor compounds are different.
Abstract:
A display panel with microcavities each having ends of asymmetric cross-sectional area. An exemplary display panel has a substrate; a pixel electrode formed on the substrate; a first black matrix and a second black matrix each disposed on the substrate; and a supporting member disposed on the substrate over the pixel electrode and the black matrix, the supporting member shaped so as to form a microcavity between the pixel electrode and the supporting member, the microcavity having an upper surface proximate to the supporting member and a lower surface opposite the upper surface. The microcavity has one end positioned over the first black matrix, and another end opposite the first end and positioned over the second black matrix; the lower surface of the microcavity has first and second channels disposed therein, the first channel positioned over the first black matrix, and the second channel positioned over the second black matrix.
Abstract:
Provided are a display device capable of reducing a weight, a thickness, a cost, and a process time and having a durable structure, and a manufacturing method thereof. The display device includes: a substrate including a plurality of pixel areas; a thin film transistor formed on substrate; a first electrode connected to the thin film transistor to be formed in the pixel area; an organic layer formed on the first electrode so as to be connected along the adjacent pixel areas in a first direction among the pixel areas; a space positioned on the first electrode, of which parts of the upper surface and the side are surrounded by the organic layer; a liquid crystal formed to fill the space; and an overcoat formed to cover the rest side of the space which is not covered by the organic layer, in which a height of the upper surface of the organic layer is gradually lowered toward both edges of the pixel area from the center of the pixel area.