Abstract:
The present invention describes a method and system for simultaneous transmission of data to coherent and non-coherent receivers. The method at the transmitter includes retrieving a base ternary sequence having a pre-defined length, obtaining one or more ternary sequences corresponding to data to be transmitted and transmitting the obtained one or more ternary sequences by the transmitter. The method steps at the receiver includes receiving one or more ternary sequences corresponding to the data transmitted, demodulating each of the received ternary sequences by correlating with all cyclic shifts of the base ternary sequence by the receiver if the receiver is a coherent receiver, demodulating each of the received ternary sequences by correlating with all cyclic shifts of the absolute of the base ternary sequence by the receiver if the receiver is a non-coherent receiver and detecting the transmitted data based on the cyclic shifts corresponding to maximum correlation values.
Abstract:
A method and an apparatus for controlling an interleaving depth are provided. The interleaving depth controlling method includes performing a modulo operation on an interleaving depth selected to be less than or equal to a maximum interleaving depth and a total number of codewords to obtain a number of remaining codewords; and comparing the total number of the codewords to the interleaving depth, when the number of the remaining codewords excludes “0”, to control the interleaving depth.
Abstract:
An adaptive bio-signal feature combining apparatus includes: a feature extractor configured to extract first feature values and second feature values from a bio-signal of an object; a stable interval determiner configured to determine at least one stable interval in the bio-signal; a statistical variable calculator configured to calculate a statistical variable value of a first feature and a statistical variable value of a second feature for each of the at least one stable interval based on the first and second feature values extracted from the at least one stable interval; and a feature combiner configured to calculate an integrated combining coefficient that is used to combine the first feature and the second feature, based on the statistical variable value of the first feature and the statistical variable value of the second feature,
Abstract:
The present invention describes a method and system for simultaneous transmission of data to coherent and non-coherent receivers. The method at the transmitter includes retrieving a base ternary sequence having a pre-defined length, obtaining one or more ternary sequences corresponding to data to be transmitted and transmitting the obtained one or more ternary sequences by the transmitter. The method steps at the receiver includes receiving one or more ternary sequences corresponding to the data transmitted, demodulating each of the received ternary sequences by correlating with all cyclic shifts of the base ternary sequence by the receiver if the receiver is a coherent receiver, demodulating each of the received ternary sequences by correlating with all cyclic shifts of the absolute of the base ternary sequence by the receiver if the receiver is a non-coherent receiver and detecting the transmitted data based on the cyclic shifts corresponding to maximum correlation values.
Abstract:
A transmitter is configured to transmit a radio frequency (RF) signal to a receiver. The receiver is configured to receive the RF signal and decode data. Furthermore, a method of wireless communication is provided between the transmitter and the receiver, in which the transmitter transmits to the receiver the RF signal. A carrier phase of the RF signal is randomly converted. The receiver detects an envelope of the RF signal, and extracts data from the RF signal.
Abstract:
A method and an apparatus for gesture recognition and a wearable device for gesture recognition are described. A method of gesture recognition involves using a processor to detect a motion artifact from an output signal of a biosignal sensor and generating a control signal to control a function of a target device that corresponds to a reference signal pattern in response to a signal pattern of the detected motion artifact corresponding to the reference signal pattern.
Abstract:
A method and apparatus provide for stable signal demodulation in a communication system. The method and apparatus includes including detecting an erroneous demodulation value based on backward-demodulation of received signals, using a difference between a received signal to be demodulated and a preceding signal of the received signals and correcting the error demodulation value. Alternatively, backward-demodulation is used to confirm received signals.
Abstract:
A method of extracting a representative waveform of a bio-signal includes receiving an input of the bio-signal; dividing the bio-signal into a plurality of sub-signals; selecting at least one sub-signal for extracting a representative waveform from among the divided sub-signals; extracting a representative waveform by using the at least one selected sub-signal; evaluating a quality of the extracted representative waveform; and based on the representative waveform satisfying a predetermined quality criterion corresponding to the evaluation, determining that the representative waveform is a final representative waveform.
Abstract:
An apparatus for estimating bio-information includes: a sensor configured to obtain a bio-signal from an object; and a processor configured to obtain a second-order differential signal of the bio-signal, to detect at least one of an inflection point in a predetermined period of the second-order differential signal, and a zero-crossing point in the predetermined period of the second-order differential signal, to extract a feature based on the detected at least one of the inflection point and the zero-crossing point, and to estimate bio-information based on the extracted feature.
Abstract:
An apparatus for estimating bio-information may include: a bio-signal acquirer configured to acquire a bio-signal; and a processor configured to extract one or more first feature values from the bio-signal, determine a scale factor based on the first feature values, and to estimate bio-information based on the scale factor and the first feature values.