Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
The present disclosure relates to a fifth generation (5G) or pre-5G communication system supporting a higher data transmission rate since fourth generation (4G) communication systems like long term evolution (LTE). A method for transmitting heterogeneous service data from a base station is provided. The method for transmitting data includes at least one processor configured to control to allocate a first resource by scheduling to provide the first service data to the first terminal, identify whether the second service data to be transmitted to the first terminal or the second terminal is generated using at least some of the first resource during the transmission of the first service data to the first terminal using the first resource, transmit the second service data by allocating the second service data to at least some of the first resource if the second service data is generated, and configure and transmit the second service data.
Abstract:
The present disclosure relates to 5th generation (5G) or pre-5G communication system for supporting a higher data transmission rate beyond a 4th generation (4G) communication system such as long term evolution (LTE). An operation method of a base station in a wireless communication system comprises the steps of: reallocating a resource, which has been allocated to a first service, to a second service in order to provide the second service; transmitting control information related to at least one reference signal punctured for reallocation of the resource; and transmitting the at least one punctured reference signal via a resource different from the resource having been allocated to the second service.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for operating a transmission device in a wireless communication system is provided. The method includes generating modulation symbols based on a modulation scheme, generating transformed data by applying a modified Fourier transform to the modulation symbols, generating a transmission signal based on the transformed data, and transmitting the transmission signal. The modified Fourier transform applies to each of the modulation symbols an amount of phase change that is shifted from an amount of reference phase change by a phase offset.
Abstract:
The disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data transmission rate beyond a 4th generation (4G) communication system such as long term evolution (LTE). A method for operating a base station in a wireless communication system, according to the present disclosure, comprises determining the window configuration to be applied to a transmission signal based on channel-related information of at least one UE; and transmitting control information comprising the window configuration to the at least one UE, wherein the window configuration comprises a length of each window to be applied to each of at least one subband of a frequency band allocated to the transmission signal.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An embodiment of the present disclosure relates to a method for operating a terminal, which includes receiving timing advance (TA) information related to an interference, determining whether to apply the TA information related to the interference, and transmitting uplink data based on the TA information related to the interference, and the terminal performing the same. Further, the present disclosure relates to a method and an apparatus for operating a base station operating with the terminal.
Abstract:
A Virtual Antenna Mapping (VAM) method of a base station and a transmission apparatus equipped with M physical antennas and Q Transceiver Units (TXRUs) are provided. The method includes transmitting Reference Signals (RSs) arranged differently according to respective VAM patterns to a terminal in a transmission mode supporting N logical antennas; receiving a feedback including information regarding a VAM pattern selected as a result of channel measurement with respect to the RSs transmitted according to the VAM pattern from the terminal; and transmitting a signal to the terminal through the M physical antennas by applying the selected VAM pattern, wherein the selected VAM pattern maps N data streams corresponding to the N logical antennas to the M physical antennas through the Q TXRUs.
Abstract:
A method and an apparatus for processing feedback information in a wireless communication system supporting a beamforming are provided. The method includes receiving reference signals for each of at least one of transmitted beams which are transmitted from a base station with respect to each received beam of the terminal, determining reception power related information for a beam combination including each of the at least one of the transmitted beams and the received beam, determining channel capacities for each beam combination targeted beam combinations of which each value is equal to or greater than a certain critical value, as a result of the determining of the reception power related information, and determining best beam related information based on the result of the determining of the channel capacities.
Abstract:
An electronic device and a method are provided. The electronic device includes communication circuitry configured to receive signals from at least one user equipment (UE), and a processor, wherein the processor may be configured to determine a reception quality of a signal obtained through the communication circuitry, obtain an offset corresponding to a channel characteristic of the signal, determine, based on the offset indicating a signal quality difference corresponding to a difference between a reception dimension (Rx dimension) at signal reception and a target Rx dimension and the reception quality, an expected reception quality corresponding to the target Rx dimension, pre-schedule the target Rx dimension and a frequency resource to the at least one UE, determine an expected throughput for the at least one UE based on the expected reception quality, determine the target Rx dimension, and receive or transmit data from or to the UE.
Abstract:
Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety related services, and the like) on the basis of 5G communication technology and IoT-related technology. According to the disclosure, a terminal of a communication system can transmit, to a base station, information related to a mobile characteristic or a channel time-varying characteristic, receive information related to reference signal transmission from the base station, generate a reference signal on the basis of the information related to reference signal transmission, and transmit the reference signal to the base station.