Abstract:
Provided is a synthesis system of a time-of-flight (ToF) camera and a stereo camera for reliable wide range depth acquisition and a method therefor. The synthesis system may estimate an error per pixel of a depth image, may calculate a value of a maximum distance multiple per pixel of the depth image using the error per pixel of the depth image, a left color image, and a right color image, and may generate a reconstructed depth image by conducting phase unwrapping on the depth image using the value of the maximum distance multiple per pixel of the depth image.
Abstract:
An image processing apparatus may include a sensor unit which generates both a color image and a depth image. A color-depth time difference correcting unit may correct a mismatching that occurs due to a time difference between a point in time when the color image is generated and a point in time when the depth image is generated. An image generator may generate a stereoscopic image or a multi-view image using the color image and the depth image after the mismatching is corrected.
Abstract:
A method and apparatus for processing a depth image that removes noise of a depth image may include a noise estimating unit to estimate noise of a depth image using an amplitude image, a super-pixel generating unit to generate a planar super-pixel based on depth information of the depth image and the noise estimated, and a noise removing unit to remove noise of the depth image using depth information of the depth image and depth information of the super-pixel.
Abstract:
A method of processing a depth image includes receiving a high-resolution color image and a low-resolution depth image corresponding to the high-resolution color image, generating a feature vector based on a depth distribution of the low-resolution depth image, selecting a filter to upsample the low-resolution depth image by classifying a generated feature vector according to a previously learnt classifier, upsampling the low-resolution depth image by using a selected filter, and outputting an upsampled high-resolution depth image.
Abstract:
An image processing apparatus and method for zooming in on a partial area in a three-dimensional (3D) image selects a zoom mode from among a two-dimensional (2D) zoom mode, a 3D zoom mode, and an intermediate dimensional zoom mode between the 2D zoom mode and the 3D zoom mode. The image processing apparatus may include a mode selecting unit to select a zoom mode to be applied to a zoom area in a color image and a depth image among the 2D zoom mode, the 3D zoom mode, and the intermediate dimensional zoom mode between the 2D zoom mode and the 3D zoom mode, and a scaling unit to scale the zoom area using a zoom factor indicating magnification or minification of the zoom area and the selected zoom mode.
Abstract:
An apparatus and method for generating a depth image using transition of light sources may include a surface information determination unit to determine surface information related to a surface of an object, using a plurality of intensity images generated according to position of light sources; and an output depth image generation unit to generate an output depth image, using an original depth image and the surface information.
Abstract:
An endoscope using depth information and a method for detecting a polyp based on the endoscope using the depth information are provided. The endoscope using the depth information may generate an irradiated light signal including a visible light, obtain depth information based on the irradiated light signal and a reflected light signal obtained through the irradiated light signal being reflected off of an intestine wall, generate a depth image inside the intestine wall based on the depth information, and detect a polyp located on the intestine wall based on the depth image.
Abstract:
A method and apparatus for generating a spanning tree, a method and apparatus for stereo matching, a method and apparatus for up-sampling, and a method and apparatus for generating a reference pixel are disclosed, in which a spanning tree may be generated by reference pixels, stereo matching or up-sampling may be performed based on the generated spanning tree, and a reference pixel may be generated based on a stereo video.
Abstract:
An image processing apparatus and method for zooming in on a partial area in a three-dimensional (3D) image selects a zoom mode from among a two-dimensional (2D) zoom mode, a 3D zoom mode, and an intermediate dimensional zoom mode between the 2D zoom mode and the 3D zoom mode. The image processing apparatus may include a mode selecting unit to select a zoom mode to be applied to a zoom area in a color image and a depth image among the 2D zoom mode, the 3D zoom mode, and the intermediate dimensional zoom mode between the 2D zoom mode and the 3D zoom mode, and a scaling unit to scale the zoom area using a zoom factor indicating magnification or minification of the zoom area and the selected zoom mode.
Abstract:
An apparatus for calibrating a multiview image may extract feature points from the multiview image and perform image calibration based on the extracted feature points, track corresponding feature points in temporally successive image frames of a first view image, and perform the image calibration based on pairs of corresponding feature points between the feature points tracked from the first view image and feature points of a second view image.