Abstract:
A method includes covering ostai of branch vessels emanating from a main vessel and an aneurysm with an integrated mesh high metal to vessel ratio stent. The integrated mesh high metal to vessel ratio stent includes serpentine rings integrated with an integrated mesh having holes formed therein. A metal to vessel ratio of the integrated mesh high metal to vessel ratio stent is sufficiently high to encourage tissue ingrowth around the integrated mesh high metal to vessel ratio stent yet is sufficiently low to ensure perfusion of the branch vessels through the integrated mesh high metal to vessel ratio stent.
Abstract:
A variable zone high metal to vessel ratio stent includes a proximal high metal to vessel ratio zone, a central low metal to vessel ratio zone, and a distal high metal to vessel ratio zone. The proximal high metal to vessel ratio zone is deployed with fixation and sealing to healthy tissue of a main vessel superior to branch vessels and an aneurysm. The central low metal to vessel ratio zone is deployed directly on ostai of the branch vessels. However, as the central low metal to vessel ratio zone is highly permeable, blood flows from the main vessel through the central low metal to vessel ratio zone and into branch vessels.
Abstract:
A method includes covering an ostium of a branch vessel emanating from a main vessel with a proximal landing zone of a high metal to vessel ratio landing zone stent-graft, wherein a metal to vessel ratio of the proximal landing zone when deployed is sufficiently high to encourage tissue ingrowth around the proximal landing zone yet is sufficiently low to ensure perfusion of the branch vessel through the proximal landing zone. The method further includes covering an aneurysm of the main vessel with an exclusion zone of the high metal to vessel ratio landing zone stent-graft, the exclusion zone being formed of graft material. By forming the exclusion zone of graft material, excellent exclusion of the aneurysm is achieved.
Abstract:
A stent for delivering therapeutic agents to a body lumen includes a plurality of circumferential serpentine bands with each band comprising a plurality of struts. At least one strut has at least one first well region and at least one second well region. The at least one first well region has a first thickness, the at least one second well region has a second thickness, the first thickness being greater than the second thickness. Each well region defines a well having a depth. At least some of the wells contain a therapeutic agent.
Abstract:
An expandable stent has a plurality of expandable rings formed of a plurality of struts and at least one first connector interconnecting adjacent expandable rings. The plurality of struts include a first strut and the at least one first connector has a first arm. A first portion of the first arm is engaged to a first portion of the first strut so that the first portion of the first arm and the first portion of the first strut define a through hole.