Abstract:
A matted particulate electrode located between the current collector and a porous separator of a rechargeable lithium battery is described, which contains electro-active particles intermixed with pliable, solid, lithium ion conducting, polymer electrolyte filaments having adhesive surfaces. The electro-active particles and the optionally added electro-conductive carbon particles adhere to the tacky surface of the adhesively interlinking polymer electrolyte filaments. The matted particulate electrode is impregnated with an organic solution containing another lithium compound. In a second embodiment the porous separator is coated on at least one of its faces, with polymer electrolyte having an adhesive surface and made of the same polymer as the electrolyte filaments. The polymer electrolyte filaments in the matted layer may adhere to the coated surface of the separator. In addition the polymer coating is partially filling the pores of the porous electrolyte, but leaving sufficient space in the pores for the organic solution to penetrate the separator of the lithium battery.
Abstract:
The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or microporous inert polymer separator laminate which carries another porous polymer containing a dissociable lithium compound, and the adherent polymer layers are impregnated with an organic liquid containing a lithium salt. The porous or microporous separator laminate may be a single polymer layer or a multiple polymer layer. The composite electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent dissociable lithium compound containing polymer layer on each of its major faces.
Abstract:
The non-aqueous thin film rechargeable lithium battery described has a negative electrode comprising a polymer laminate having embedded therein carbon, and a layer of fine carbon agglomerated with a lithium compound containing organic binder carried by the polymer laminate. The positive electrode of the rechargeable lithium battery contains a layer of fine particles of vanadium oxide, manganese oxide, cobalt oxide, nickel oxide or silver vanadate, agglomerated with a lithium compound containing organic binder and the layer is supported on another polymer laminate embedding carbon. In one embodiment the lithium battery has a solid polymer electrolyte containing a lithium compound capable of releasing lithium ions, located between the positive and negative electrodes. In another embodiment a microporous polymer laminate separator which has been impregnated with an organic liquid electrolyte containing a lithium compound, is placed between the polymer laminate negative electrode and the polymer laminate positive electrode. In both embodiments the electrodes are rendered adherent to the mobile lithium ion carrying electrolyte with a coating of an organic adhesive containing a lithium compound in a concentration lower than in the electrolyte, disposed between them.
Abstract:
A lithium battery constructed of lithium ion containing folded and stacked electrochemical cells is described, having a folded continuous, flexible lithium ion containing polymer laminate electrolyte sandwiched between first and second polarity lithium containing discrete electrode plates. The first and second polarity discrete electrode plates are carried, respectively, by first and second electrical current conducting flexible polymer laminates. The assembled polymer laminates are folded and stacked, connected to current collectors and packed into a lithium battery case.
Abstract:
A composition for hard, sintered, tough and wear resistant ceramic articles is described. The composition is comprised of alumina, titanium carbonitride and filaments of titanium diboride or titanium nitride. The ceramic articles made of this composition are isostatically hot pressed or sintered at high temperature in inert gas. The density of the ceramic articles is usually in excess of 99% theoretical density and the hardness is greater than 20 GPa. The process was applied to manufacture ceramic cutting inserts of the above composition.
Abstract:
A process is described wherein hydrogen and its isotopes are dissolved in palladium metal in high density by utilizing electrochemical methods in an electrolytic cell. The cell has an inert anode and a palladium containing cathode, both being immersed in an electrolyte which contains a lithium salt dissolved in an aprotic solvent, and a small amount of water. The dissolved hydrogen to palladium ratio in the palladium bearing cathode, which may be achieved by this process, is in excess of 0.95.
Abstract:
Electrodes are disclosed which comprise a porous conductive material as a primary electrode component in electrical contact with a secondary electrode component which preferably is a metal, such as titanium. The secondary electrode component is normally conductive when operating as a cathode, and is capable of alternating between being non-conductive when operating as an anode and becoming conductive again when the electrode is operating as a cathode. Processes for removing metallic species from solution utilizing such electrodes are also disclosed.
Abstract:
A battery controller for charging and discharging a plurality of batteries is disclosed. The battery controller has a plurality of direct current to direct current (DC to DC) converters connected to each other in series. Each battery of a plurality of batteries is electrically connectable to a respective DC to DC converter. A co-ordinator connected to each of the plurality of DC to DC converters controls charging and discharging of the battery electrically connected to the respective converter. The co-ordinator can also control charging and discharging of any one of the batteries to ensure that the battery retains sufficient electrical capacity, and, to increase the longevity of the respective batteries. Because each battery is electrically connected to a respective DC to DC converter, the energy from one battery can be used to charge another battery in order to monitor battery characteristics including energy capacity of each battery. Each of the DC to DC converters is selected to operate preferably below 30 volts while the total voltage of the entire battery system can be much more than 30 volts depending on the number of DC to DC converters placed in series.
Abstract:
Electrodes are disclosed which comprise a porous conductive material as a primary electrode component in electrical contact with a secondary electrode component which preferably is a metal, such as titanium. The secondary electrode component is normally conductive when operating as a cathode, and is capable of alternating between being non-conductive when operating as an anode and becoming conductive again when the electrode is operating as a cathode. Processes for removing metallic species from solution utilizing such electrodes are also disclosed.
Abstract:
An electrical lead for simultaneously connecting an external power source to an electrical load and an external battery is disclosed. The electrical lead has preferably a double connector comprising a socket part axially aligned with a plug part at a first end of the lead. The socket part connects with a plug from an external power source and the plug part connects with an electrical load, such as a portable computer. A separate plug, located at the second end of the electrical lead, is provided for connecting to an external battery. The socket part, connectable to the external load, is electrically coupled to the plug part for connection to the electrical load and also the plug for connection to the external battery. The lead comprises a first insulated conductor electrically coupling the socket part to the plug, and, a second insulated conductor electrically coupling the plug to the plug part. In this way, the socket part is electrically coupled in parallel with the plug part. Furthermore, the internal terminals of the socket part, the plug part and the plug are electrically coupled in parallel. Likewise, the external terminals of the socket part, the plug part and the plug are electrically coupled in parallel.