Abstract:
Detection of electric power generator stator ground fault conditions and protection of the generator due to such conditions is provided herein. In one embodiment, a generator protection element may calculate generator third harmonic voltage quantities using measurements from the generator terminals, and determine a stator ground fault condition using the calculated generator third harmonic voltage quantity. A tripping subsystem may issue a trip command based upon detection of a stator ground fault condition.
Abstract:
An electric power system may include numerous devices electrically connected to numerous other devices. In some cases, it may be beneficial to quickly determine and resolve an electric power system topology. Using a protection and control (PAC) algorithm, an electric power delivery system may be identified and represented as a graph including nodes and edges. The nodes represent electric power sources, busses, and ground. The edges represent circuit breakers, disconnects switches, and ground switches. By representing the electric power delivery system as a graph, the connections between various nodes (e.g., power sources, busses, grounds) and edges (e.g., circuit breakers, disconnects, ground switches) may be quickly and easily realized, represented, and visualized. Doing so may reduce programming and testing time after a change to the topology.
Abstract:
The present disclosure pertains to devices, systems, and methods for monitoring a generator. In one embodiment, the system may include a measurement subsystem to receive a plurality of split-phase measurements of branch currents associated with the at least one generator. A split-phase transverse differential monitoring subsystem may receive the plurality of split-phase measurements of branch currents associated with the at least one generator and may generate an offset value representing a standing split-phase current. A protective action subsystem may generate a first protective action based on the phasor operating current.
Abstract:
Disclosed are systems and methods to determine a direction to a fault of an electrical generator using sensitive current. A ground fault is determined using voltage signals from the generator installation. Incremental residual values of the sensitive current, along with the voltage, are used to determine a direction to the fault. The generator may be high-impedance grounded. The systems and methods further indicate the direction to a fault where multiple generators are connected using a common generation bus.
Abstract:
Protection devices prevent damage to synchronous generators during loss-of-field events. In various embodiments, a first protective element is associated with a first protection zone to protect a generator from a loss-of-field event at full load. A second protective element is associated with a second protection zone to prevent thermal overload during underexcited operation of the generator and to protect from loss-of-filed at light load. A third protective element associated with a third protection zone limits operation of the generator within the generator's specific steady-state stability limits. A fourth protective element is associated with a fourth protection zone to provide an alarm prior to operation of the second protective element. In various embodiments, characteristics and limits of each of the protective elements are defined in the same plane (specifically, the P-Q plane) to simplify settings and allow for visualization of the element characteristics and the generator capability curve at one or more temperatures or cooling capacities.
Abstract:
The present disclosure is applicable to generators with low motoring power. In one embodiment, a generator protection element may include a generator monitoring subsystem configured to measure a real power output and an imaginary power output of a generator. The system may also include an electrical parameter threshold subsystem configured to determine whether the measured real power output and the measured imaginary power output satisfy a tripping characteristic. The tripping characteristic may be defined by a function having a slope with respect to a real power axis and an imaginary power axis. In some embodiments, the function may be a piecewise function that defines a first linear segment having a first slope and a second linear segment having a second slope. The first slope and the second slope may be equal and opposite. A tripping subsystem may issue a trip command based upon satisfaction of the tripping characteristic.
Abstract:
Protection of an electrical generator includes determining a rotor and stator components using rotor and stator electrical signals, calculating a unbalance and/or differential component using the stator and rotor components, and determining a stator or rotor fault based on the unbalance and/or differential component. Further, the faulted phase and/or zone of a stator fault may be determined using the stator positive sequence voltage and negative sequence current.