摘要:
The invention provides a magneto-resistive effect device of the CPP (current perpendicular to plane) structure, comprising a magneto-resistive effect unit, and a first shield layer and a second shield layer located and formed such that the magneto-resistive effect unit is sandwiched between them, with a sense current applied in a stacking direction. The magneto-resistive effect unit comprises a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed such that the nonmagnetic intermediate layer is interposed between them. The first shield layer, and the second shield layer is controlled by magnetization direction control means in terms of magnetization direction, and the first ferromagnetic layer, and the second ferromagnetic layer receives action such that there is an antiparallel magnetization state created, in which mutual magnetizations are in opposite directions, under the influences of magnetic actions of the first shield layer and the second shield layer. It is thus possible to achieve an antiparallel magnetization state for two ferromagnetic layers (free layers) with simple structure yet without being restricted by the material and specific structure of an intermediate film interposed between the two ferromagnetic layers (free layers). Further, it is possible to make improvements in linear recording densities by the adoption of a structure capable of making the “read gap length” (the gap between the upper and lower shield layers) short (narrow) thereby meeting recent demands for ultra-high recording densities. Furthermore, it is possible to obtain stable magneto-resistive effect changes so that much higher reliability is achievable.
摘要:
A magnetoresistive element includes a pair of shield portions, and an MR stack and a bias magnetic field applying layer that are disposed between the pair of shield portions. The shield portions respectively include single magnetic domain portions. The MR stack includes a pair of ferromagnetic layers magnetically coupled to the pair of single magnetic domain portions, and a spacer layer disposed between the pair of ferromagnetic layers. The MR stack has a front end face, a rear end face and two side surfaces. The magnetoresistive element further includes two flux guide layers disposed between the pair of single magnetic domain portions and respectively adjacent to the two side surfaces of the MR stack. Each of the two flux guide layers has a front end face and a rear end face. The bias magnetic field applying layer has a front end face that faces the rear end face of the MR stack and the respective rear end faces of the two flux guide layers.
摘要:
The invention provides a magneto-resistive effect device of the CPP (current perpendicular to plane) structure, having a magneto-resistive effect unit, and a first shield layer and a second shield layer located and formed such that the magneto-resistive effect unit is sandwiched between them, with a sense current applied in a stacking direction.
摘要:
A magnetoresistance effect element (MR element) for use in a thin-film magnetic head has a buffer layer, an antiferromagnetic layer, a pinned layer, a spacer layer, a free layer, and a cap layer that are successively stacked. A sense current flows in a direction perpendicular to layer surfaces via a lower shield layer and an upper shield layer. The pinned layer comprises an outer layer having a fixed magnetization direction, a nonmagnetic intermediate layer, and an inner layer in the form of a ferromagnetic layer. The spacer layer comprises a first nonmagnetic metal layer, a semiconductor layer made of ZnO, and a second nonmagnetic metal layer. The inner layer or the outer layer includes a diffusion blocking layer made of an oxide of an element whose electronegativity is equal to or smaller than Zn, e.g., ZnO, TaO, ZrO, MgO, TiO, or HfO, or made of RuO.
摘要:
A method for manufacturing a thin film magnetic head includes a step for forming an MR layered body; a step for forming a first sacrificial layer made of material removable by wet etching, and subsequently, forming a cap layer on the upper surface of the first sacrificial layer; further, a step for patterning the MR layered body and the cap layer and then filling part of the removed areas of the MR layered body and the cap layer with a bias magnetic layer and the remaining with insulating layers; a step for removing the cap layer by dry etching and, subsequently, removing the first sacrificial layer by wet etching; and a step for forming a second shield layer above the MR layered body and the bias magnetic layer.
摘要:
A thin film magnetic head includes a magnetoresistance (MR) layered body that has first and second magnetic layers whose magnetization direction are changed according to an external magnetic field, a nonmagnetic middle layer and where the first magnetic layer, the nonmagnetic middle layer and the second magnetic layer are disposed in a manner of facing each other in respective order, first and second shield layers that are disposed in a manner of sandwiching the MR-stack in the film surface orthogonal direction of the MR-stack facing the first magnetic layer and the second magnetic layer, respectively, and that also serve as an electrode for applying a sense current to the film surface orthogonal direction of the MR-stack; and a bias magnetic field application means that is disposed on an opposite surface of an air bearing surface (ABS) of the MR-stack, and that applies a bias magnetic field to the MR-stack in the direction orthogonal to the ABS. The first shield layer has a first exchange coupling magnetic field (ECMF) application layer that is disposed in a manner of facing the first magnetic layer, and that transmits to the first magnetic layer an exchange coupling magnetic field in the direction in parallel with the ABS, and that includes an amorphous layer, and has a first antiferromagnetic layer that is disposed on a rear surface of the first ECMF application layer viewed from the first magnetic layer in a manner of facing the first ECMF application layer, and that is exchange-coupled with the first ECMF application layer. The second shield layer has a second exchange coupling magnetic field (ECMF) application layer that is disposed in a manner of facing the second magnetic layer, and that transmits to the second magnetic layer the exchange coupling magnetic field in a direction in parallel with the ABS; and a second antiferromagnetic layer that is disposed on a rear surface of the second ECMF application layer viewed from the second magnetic layer, and that is exchange-coupled with the second ECMF application layer.
摘要:
A thin film magnetic head comprise an MR laminated body composed of a first and second MR magnetic layers, first and second shield layers, and a bias magnetic field application layer provided on an opposite side of an air bearing surface (ABS) of the MR laminated body in order to apply a bias magnetic field orthogonal relative to the ABS. The first shield layer comprises a first exchange coupling magnetic field application layer, a first antimagnetic layer, a second exchange coupling magnetic field application layer, and a second antimagnetic layer. The first antimagnetic layer is provided in contact with the first exchange coupling magnetic field application layer on the rear face of the first exchange coupling magnetic field application layer and which is antimagnetically coupled with the first exchange coupling magnetic field application layer. The second shield layer has the same configuration as that of the first shield layer.
摘要:
A thin film magnetic head including an MR laminated body composed of a first and second MR magnetic layers, first and second shield layers, and a bias magnetic field application layer provided on an opposite side of an air bearing surface (ABS) of the MR laminated body in order to apply a bias magnetic field orthogonal relative to the ABS. The first shield layer includes a first exchange coupling magnetic field application layer and a first antiferromagnetic layer; and the second shield layer includes a second exchange coupling magnetic field application layer and a second antiferromagnetic layer.
摘要:
A thin film magnetic head includes a magneto-resistance (MR) laminated body, a lower shield layer and an upper shield layer that face the first MR magnetic layer. The lower and upper shield layers respectively have first and second anti-parallel layers and first and second antiferromagnetic layers. An exchange coupling intensity relating to an antiferromagnetic coupling between the second anti-parallel layer and the second antiferromagnetic layer is greater in the peripheral area of a projection area than that of the projection area of the upper shield layer side end surface of the MR laminated body to the film surface's orthogonal direction.
摘要:
A thin film magnetic head comprises an MR laminated body that has first and second magnetic layers, a nonmagnetic middle layer, and the first and second magnetic layers and the nonmagnetic middle layer are laminated to make contact with each other in respective order. First and second antiferromagnetic layers are provided with the first and second magnetic layers respectively. The first antiferromagnetic layer and/or the second antiferromagnetic layer contains a void part or a thin portion at least in a portion of the projection area toward the orthogonal direction to the film surface of the MR laminated body.