Abstract:
A method of forming a composite lesion pattern in a tissue region at or near a sphincter comprising providing a catheter having a plurality of energy delivery devices coupled to the catheter. The catheter is introduced at least partially into the sphincter. Energy is delivered from the energy delivery devices to produce the composite lesion pattern. The composite lesion pattern comprises a radial distribution of lesions about the tissue region and a longitudinal distribution of lesions along the tissue region.
Abstract:
An apparatus to treat a sphincter has a support member. A sphincter electropotential mapping device includes a mapping electrode. The sphincter electropotential mapping device is coupled to the support member and configured to detect aberrant myoelectric activity of the sphincter.
Abstract:
A method for treating a sphincter provides a polymer material having a liquid state. The method also provides a catheter having a distal end, a tissue piercing device carried by the distal end, and an energy delivery device coupled to the tissue piercing device. The tissue piercing device has a lumen. The method introduces the catheter into an esophagus and pierces an exterior sphincter tissue surface within with the tissue piercing device. The method advances the tissue piercing device into an interior sphincter tissue site and conveys the polymer material while in a liquid state through the lumen into the interior sphincter tissue site. The method delivers energy to the tissue piercing device to transform the polymer material into a less liquid state within the interior sphincter tissue site, to thereby remodel the sphincter.
Abstract:
A method of forming a composite lesion pattern in a tissue region at or near a sphincter comprising providing a catheter having a plurality of energy delivery devices coupled to the catheter. The catheter is introduced at least partially into the sphincter. Energy is delivered from the energy delivery devices to produce the composite lesion pattern. The composite lesion pattern comprises a radial distribution of lesions about the tissue region and a longitudinal distribution of lesions along the tissue region.
Abstract:
Methods treat a tissue region. In one arrangement, the methods deploy an electrode on a support structure in a tissue region at or near the cardia of the stomach. In one embodiment, the support structure has a proximal region and a distal region. The proximal region is enlarged in comparison to the distal region, and the electrode is carried by the enlarged proximal surface. The methods advance the electrode in a path to penetrate the tissue region and couple the electrode to a source of radio frequency energy to ohmically heat tissue and create a lesion in the tissue region.
Abstract:
A method of treating a sphincter that provides an expandable basket structure with a first energy delivery device. The basket structure is introduced in a sphincter. The first energy delivery device is advanced from the basket structure into an interior of the sphincter. Sufficient energy is delivered from the first energy delivery device to create a desired tissue effect in the sphincter. Thereafter, the basket structure is removed from the sphincter.
Abstract:
Improved electrode assemblies for treating a tissue region at or near a sphincter comprise a support structure and an electrode carried by the support structure for advancement in a path to penetrate the tissue region. In one arrangement, the electrode has a non-cylindrical cross section selected to resist deflection when advanced to penetrate the tissue region. In another arrangement, the electrode includes a tissue stop to resist tissue penetration beyond a selected depth. In another arrangement, the electrode includes a proximal portion formed from a first material and a distal tissue penetrating portion formed of a second material different than the first material. The first material can comprise, e.g., stainless steel, and the second material can comprise, e.g., nickel titanium.
Abstract:
Assemblies for treating a tissue region at or near a sphincter have a support structure with a distal end and an electrode carried by the support structure for contact with the tissue region. A lumen in the support structure accommodates passage of a body through the support structure and beyond the distal end of the support structure. The body can comprise a guide wire to guide deployment of the support structure, or an endoscope to permit visualization of the support structure from beyond the distal end of the support structure.
Abstract:
A sphincter treatment apparatus includes an energy delivery device introduction member including a proximal end with a first radius of curvature and a distal end with a second radius of curvature. The introduction member is configured to be introduced into the sphincter in a non-deployed state and to be expanded to a deployed state to at least partially expand the sphincter or an adjoining structure. An energy delivery device is coupled to the introduction member. A retainer member is coupled to the energy delivery device introduction member and configured to controllably position the introduction member in an orifice of the sphincter.
Abstract:
An ablation apparatus has an expandable member that is inserted into an organ of a body and ablates all or a selected portion of the inner layer of the organ. Electrolytic solution fills the expandable member, and the expandable member includes a plurality of apertures from which electrolytic solution flows from the expandable member. First and second fluid conduits, which can be first and second conforming members, are in a surrounding relationship to the expandable member. The second conforming member, including a conductive surface, is made of a material that provides substantial conformity between the conductive surface and a shape of the inner layer of the organ. A plurality of electrodes is positioned between the two conforming members. The expandable member serves as an insulator to RF energy. Each electrode includes an insulator formed on a surface of the electrode positioned adjacent to the second conforming member. The combination of sandwiching the electrodes between the two conforming members, and the use of two insulators, one on the electrode and the other on the expandable member, provides selectable ablation of the inner layer of the organ. A feedback device is included and is responsive to a detected characteristic of the inner layer. The feedback device provides a controlled delivery of RF energy to the electrodes.