Abstract:
A recording medium comprising a recording area, the recording area includes a first area and a second area, the first area includes a frame area, the frame area includes an area in which a second synchronization code sequence and at least a portion of data are to be recorded, and the second area includes an area in which a third synchronization code sequence and a fourth synchronization code sequence are to be recorded.
Abstract:
A method of recording data optically to an optical disk having a plurality of sectors, in which each sector has a region to be recorded with data, the data is recorded in units of blocks, and the block includes a predetermined number of sectors and is a data unit including error correction codes. In recording data related to a content by dividing and recording the data in a plurality of sectors continuously, dummy data to be used for extracting a clock in phase lock loop (PLL) for data reproduction is recorded on a region adjacent before a sector from which data recording is started. The data related to the contents is recorded on sectors following the region recorded with the dummy data.
Abstract:
An optical disk and a method for identifying the optical disk are provided which make it possible to identify a recording system of the optical disk easily in a short time by a recording and reproduction apparatus when a groove-recording system and a land-recording system are both employed in one kind of optical disk, for, example, a BD-R. Specifically, the polarity upon reproducing the wobble information is made to be the same in both of the optical disk of groove-recording system and the optical disk of land-recording system. The recording system of the optical disk that shows the same wobble polarity irrespective of the recording system can be easily detected by finding a tracking polarity that can recognize the wobble information by changing the tracking polarity, whereby the start-up time of the recording and reproduction apparatus can be shortened.
Abstract:
An optical disc medium comprises a track groove, along which main information is recorded. The track groove is divided into a plurality of blocks. The plurality of blocks each include a plurality of frames. The plurality of frames each include one shape of wobbles indicating sub information, among a plurality of prescribed shapes of wobbles. The plurality of blocks each have address information. The address information is represented by a string of at least one piece of sub information represented by the shape of wobbles of at least one of the plurality of frames.
Abstract:
A method of recording data optically to an optical disk having a plurality of sectors, in which each sector has a region to be recorded with data, the data is recorded in units of blocks, and the block includes a predetermined number of sectors and is a data unit including error correction codes. In recording data related to a content by dividing and recording the data in a plurality of sectors continuously, dummy data to be used for extracting a clock in PLL for data reproduction is recorded on a region adjacent before a sector from which data recording is started. The data related to the contents is recorded on sectors following the region recorded with the dummy data.
Abstract:
An optical disc medium comprises a track groove, along which main information is recorded. The track groove is divided into a plurality of blocks. The plurality of blocks each include a plurality of frames. The plurality of frames each include one shape of wobbles indicating sub information, among a plurality of prescribed shapes of wobbles. The plurality of blocks each have address information. The address information is represented by a string of at least one piece of sub information represented by the shape of wobbles of at least one of the plurality of frames.
Abstract:
An apparatus for recording/reproducing data onto/from an information recording medium (101) is provided. The apparatus (1) comprises a section for reading first data from a first predetermined position in a data recording area of the medium, a section for determining whether or not the first data matches first type information indicating a type of a first predetermined file system, a section for executing a recording or reproduction process using the first predetermined file system when matching is positive, a section for reading second data from a second predetermined position of the data recording area when matching is negative, a section for determining whether or not the second data matches second type information indicating a type of a second predetermined file system different from that of the first predetermined file system, and a section for executing a recording or reproduction process using the second predetermined file system when matching is positive.
Abstract:
On an optical disk medium according to the present invention, address information is recorded along a wobbling track groove 2. The track groove 2 is made up of a plurality of unit sections 22, 23. Each of these unit sections 22, 23 has side faces that are displaced periodically in a disk radial direction. This displacement oscillates at a single period in a tracking direction. However, the displacement pattern differs depending on “each bit of address information (subdivided information)” allocated to each of the unit sections 22, 23.
Abstract:
An information recording medium is provided, which comprises a plurality of recording layers and a first disc information area for storing parameters relating to access to the plurality of recording layers and formats relating to the plurality of recording layer. The first disc information area is provided in a first recording layer which is one of the plurality of recording layers.
Abstract:
When recording or reading an optical disc having plural data recording layers, which data recording layer the light spot is focused on is detected to improve playback signal quality and signals written to the layer on which the light spot is focused are read more reliably. A convergent lens converges the laser beam on the optical disc, and a focus controller controls the focal point of the laser beam on the data layer. A tracking controller positions and tracks the focal point of the laser beam converged by the convergent lens on a track of the optical disc. A photodetector detects the reflected laser beam from the disc. A convergence detector then detects the convergence state of the laser beam emitted to the plural data recording layers. Based on output from the convergence detector, the laser driver is controlled to separately set beam power appropriately for each of the plural data layers of the disc during playback.