摘要:
This invention provides a recording medium supportable device such as a library device (50), which authenticates each recording medium by identification information such as serial number and controls the recording medium by a command based on radio communication. In this case, a communication identifier like a session identifier corresponding to the identification number is set and provided and the communication identifier is included in a command at the time of execution of control, so that only a specified recording medium to be controlled carries out an operation corresponding to the command. When authenticating the recording medium, the identification information, which is proper information such as serial number, is confirmed through reliable communication using successive communication identifiers, and reliable authentication of the recording medium is carried out by several stages of communication.
摘要:
In an optical information medium having an information bearing surface having projections and depressions and/or capable of forming recorded marks, a functional layer is added. The information borne on the information bearing surface can be read by using reading light of a wavelength longer than 4NA·PL wherein PL is the minimum size of the projections and depressions or the recorded marks and NA is the numerical aperture of a reading optical system, setting the power of the reading light within such a range that the functional layer does not change its complex index of refraction, and irradiating the reading light to the information bearing surface constructed by the functional layer or to the information bearing surface through the functional layer or to the functional layer through the information bearing surface. The medium enables reading at a high resolution beyond the diffraction limit.
摘要翻译:在具有具有凹凸和/或能够形成记录标记的信息承载面的光信息介质中,添加功能层。 可以通过使用长于4NA的波长的读取光读取承载在信息承载表面上的信息。其中P L L是最小尺寸的凹凸 或记录标记,NA是读取光学系统的数值孔径,将读取光的功率设定在功能层不改变其复杂折射率的范围内,并将读取光照射到信息承载面 通过功能层或信息承载表面通过功能层或通过信息承载表面到功能层构成。 该介质能够以超过衍射极限的高分辨率进行读取。
摘要:
It is an object of the present invention to provide a method for determining a pattern for modulating the power of a laser beam which can determine a pattern for modulating the power of a laser beam so that data can be recorded in a write-once type optical recording medium with a laser beam having a low recording power at a high linear recording velocity. The method for determining a pattern for modulating the power of a laser beam according to the present invention includes the steps of determining pulse train patterns by fixing a recording power at a predetermined level and varying the level of a bottom power, modulating the power of the laser beam in accordance with the pulse train patterns to record first test signals in the optical recording medium, reproducing the first test signals, determining the optimum level of the bottom power based on the amplitude of the thus reproduced first test signals, determining pulse train patterns by fixing the bottom power at the optimum level and varying the level of the recording power, modulating the power of the laser beam in accordance with the pulse train patterns to record second test signals in the optical recording medium, reproducing the second test signals and determining the optimum level of the recording power based on at least one of jitter and error rates of the thus reproduced second test signals.
摘要:
It is an object of the present invention to provide an information recording method for recording information in a data rewritable type optical recording medium having a plurality of information recording layers, which can form recording marks having good shapes. In the information recording method according to the present invention, a plurality of recording marks selected from a group consisting of several types of recording marks with different lengths each corresponding to an integral multiple of a clock cycle T are formed in an optical recording medium 10 having at least a stacked L0 layer 20 and L1 layer 30 by projecting a laser beam thereonto via a light incidence plane 13a and the number of pulses of the laser beam to be projected onto the L0 layer 20 when at least one type of the recording mark among the several types of recording marks is formed therein is set to be smaller than the number of pulses of the laser beam to be projected onto the L1 layer 30 when the at least one type of the recording mark is formed therein.
摘要:
When a memory in cassette (MIC) in a loaded tape cassette can successfully be accessed, an MIC type stored in the MIC is detected to judge a data format the tape cassette has. To this end, the tape cassette is adapted such that the data format or the loaded tape cassette can be identified without detecting an identification hole formed in the tape cassette. Thus, it is possible to easily accommodate any future extension of the data format.
摘要:
An illuminated switch unit according to the present invention is provided with: a case having a recess, a pair of protrusions provided within the recess and holes corresponding to those protrusions; a movable knob housed within the recess of the case, and provided on the protrusions so as to be able to rock or move up and down; a switch capable of bringing a movable contact provided on an elastic member to be driven by the movable knob into and out of contact with a stationary contact; and a substrate having a light source for illuminating the movable knob, wherein the elastic member is provided with light shielding members for preventing the light from the light source from passing through the holes in the case.
摘要:
Prevented is the reliability loss in phase change optical recording media during high-temperature storage, and also prevented is the phenomenon of self-erase by which a part of record marks having been formed in the media are erased due to the lateral heat diffusion into the recording layer while recording laser beams are irradiated to the media. The optical recording medium disclosed has a recording layer of a phase change type and is applied to driving units for overwriting it at a linear velocity of V.sub.0. The medium is so designed as to satisfy the requirement of 1
摘要:
In a phase change-type optical recording medium of absorption coefficient control structure used by land/groove recording system, difference in reproduction characteristics between the land and the groove is minimized while ensuring sufficient output of the tracking signal. In the optical recording medium of the present invention, light absorption coefficient at the wavelength of said recording/reproducing beam is such that: Ac/Aa.gtoreq.0.8 when light absorption coefficient in crystalline region is Ac and light absorption coefficient in amorphous region is Aa; relation between groove width W.sub.G and land width W.sub.L is such that: x=2W.sub.G /(W.sub.L +W.sub.G).gtoreq.1.03; and the relation: .lambda.max.sup.i
摘要:
The present invention aims to ensure strength of a thin-walled sintered magnet. A sintered magnet is a ferrite sintered magnet made by sintering a magnetic material. A magnetic powder mixture obtained by mixing magnetic powder with a binder resin is injection-molded into a mold with a magnetic field applied thereto to produce a molded body, which is then sintered to produce the sintered magnet. The sintered magnet has a thickness of 3.5 mm or less in the position of center of gravity thereof. The sintered magnet has a surface roughness Rz of 0.1 μm or more and 2.5 μm or less. The surface roughness Rz is a 10 point average roughness.
摘要:
It is an object of the present invention to provide an information recording method for recording information in a data rewritable type optical recording medium having a plurality of information recording layers, which can form recording marks having good shapes. In the information recording method according to the present invention, information is recorded in an optical recording medium 10 having at least a stacked L0 layer 20 and L1 layer 30 by projecting a laser beam thereonto whose power is modulated between a plurality of powers including at least a recording power (Pw) and an erasing power (Pe) via a light incidence plane 13a. When information is recorded, λ/NA is set to be equal to or shorter than 700 nm, where λ is a wavelength of the laser beam and NA is a numerical aperture (NA) of an objective lens, and a ratio (Pe/Pw) of the recording power and the erasing power when information is to be recorded in the L0 layer 20 is set to be smaller than that when information is to be recorded in the L1 layer 30.